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DYNAMIC RESPONSE OF THE INDIAN OCEAN TO
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The linearized theory of unsteady wind-driven currents in a horizontally stratified ocean is applied to the
northern part of the Indian Ocean. This is argued to be a suitable area for detailed application and
evaluation of the theory because (i) the theory has certain advantages near the equator (for example,
influence of detailed bottom topography is reduced, thermoclines are somewhat less variable in character,
and speeds of baroclinic propagation are enhanced relative to current speeds), and (ii) the wind-stress
pattern undergoes a well marked change with onset of the Southwest Monsoon, a change to which the
pattern of currents shows a more or less identifiable, and rather quick, response which may be com-
pared with theoretical predictions. Response is predicted to be found principally in two modes as far as
vertical distribution of current is concerned; to a somewhat lesser extent in the barotropic mode with
uniform distribution, and to a somewhat greater extent in the first baroclinic mode with current distri-
bution as in figure 7, concentrated predominantly in the uppermost 200 m (see Appendix for detailed
analysis of the modes appropriate to the equatorial Indian Ocean).

Of particular interest is the strong Somali Current, that flows northward along the Somali coast only
during the northern hemisphere summer (after monsoon onset) but during that time is comparable in
volume flow (about 5 x 107 m?/s) to other western boundary currents such as the Gulf Stream. Detailed
discussion of the application of linearized theory to equatorial oceans with western boundaries leads the
author to conclude, both in the barotropic (§ 2) and baroclinic (§ 4) cases, that ‘wave packets’ of
current pattern reaching such a boundary deposit the ‘flux’ they carry (velocity normal to the boundary
integrated along it) in a boundary current which rather rapidly takes a rather concentrated form.
Linear theory with horizontal transport neglected indicates that such flux requires of the order of
10 days to become concentrated in a current of 100 km width, but that thereafter it continues to become
still thinner; however, with horizontal transport included, a steady-state finite thickness of current is
reached. In reality, nonlinear effects would play an important additional part in limiting steady-state
current thickness to the observed 100 km or thereabouts, but the time scale required to bring the
thickness down to this value is probably given reasonably well by linear theory.

Calculations for a zonal distribution of winds, which rather rapidly make a reversal of direction and
increase of strength somewhat north of the Equator characteristic of the onset of the Southwest Monsoon,
predict westward propagation of both barotropic and baroclinic wave energy at comparable speeds of
the order of 1 m/s; the marked contrast here with other oceans (in the comparability of speeds) is given
particularly detailed study. Calculations indicate that the barotropic signal is considerably distorted
(figure 3) by the fact that low-wavenumber components reach the western boundary first. Baroclinic
propagation takes the form of special planetary-wave modes concentrated near the equator (§3), of
which perhaps four, delivering flux patterns depicted in figure 5, and possessing wave velocities of 0.9,
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46 M. J. LIGHTHILL

0.55, 0.4 and 0.3 m/s towards the west, are specially relevant to generation of the Somali Current.
Peak surface flows in that current are predicted to be influenced about three times as much by this
baroclinic propagation as by the barotropic.

Theory indicates 1 month (of which two-thirds is needed for propagation of current patterns and
one-third for their concentration in a boundary current) as characteristic time scale for formation of the
Somali Current (see figure 6 in particular for the calculated baroclinic component) in contradistinction
to the ‘decades’ predicted by the same type of theory in mid-latitude oceans (Veronis & Stommel 1956).
Observations do, indeed, make clear that the time scale is not significantly more than 1 month, although
the possibility that it might be still less cannot yet be decided on the basis of observational evidence.
The flow is calculated as reaching 40 %, of a typical maximum value (observed in August) already within
1 month of monsoon onset (May), even though no effect of wind stress acting within 500 km of the coast
has been taken into account. The linearized theory predicts the current as reaching as far north as 6°N or
7°N, but nonlinear terms are generally found in computational studies (Bryan 1963; Veronis 1966) to
bring about some ‘inertial overshoot’ in concentrated boundary currents, which may explain why the
current does not in fact separate until about 9°N.

1. INTRODUCTION

The ocean over which there is the strongest seasonal fluctuation in the prevailing winds is the
northern Indian Ocean, which therefore is particularly suitable for studies of the dynamic
response of ocean current patterns to changes in wind-stress patterns. Such dynamic response is
studied in the present paper principally with regard to the part of the Indian Ocean north of
about the 10°S parallel, although from time to time comparisons are made with the character-
istics of other oceans.

The regular variation in surface currents between summer and winter in this part of the
Indian Ocean, observed by mariners for over 1000 years (Warren 1966), is depicted in all good
atlases: Schott (1935), for example, portrays it excellently. Soon after the onset (normally in
June) of the Southwest Monsoon, when windsnorth of the Equator go into reverse and an extensive
region of strong south-west wind comes into being, there is an approximate reversal of most
current directions in this area, which oceanographers have normally viewed as related to the
changes in prevailing winds. Important knowledge of the corresponding distributions of current
in depth was added during the International Indian Ocean Expedition.

Of'special interest among currents present only during the northern hemisphere summer is the
Somali Current, which flows northward from the neighbourhood of the Equator to about 9°N,
where it separates from the coast (Warren, Stommel & Swallow 1966; Swallow & Bruce 1966).
Except near its inception this is a strong current with a velocity maximum normally around
2m/s (and, indeed, Swallow (1967) observed a local surface speed of over 3 m/s near the separa-
tion point); a current which like other western boundary currents such as the Gulf Stream and
the Kuroshio is regarded as too strong to be a merely local response of the ocean to the local
winds. By analogy with those others it tends to be interpreted rather as part of the ocean’s
dynamic response to the pattern of wind stress over a large part of it.

Even for interpreting patterns of mean current in an ocean such as the Atlantic, Pacific or
Antarctic, in terms of mean meteorological input, studies of dynamic response are helpful. They
can be used, for example, to find which steady responses to such an input not only are theoretically
possible, but could be arrived at by some process in time; while an estimate of such a process’s
duration may help to give understanding of the mechanics of current generation. In addition, to
answer the question of which kinds of variation in meteorological input produce which kinds
of variation about the mean current pattern, analysis of dynamic response is essential. However,
accurate checks on such analysis are difficult in oceans where the variation in meteorological
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input is of a highly random character; the northern Indian Ocean, by contrast, performs a
‘controlled experiment’, every summer, suitable for comparison with theory.

For the important task of estimating time scale of response, a linear theory is very useful.
Veronis & Stommel (1956) derived from a linear theory their celebrated estimate that the time
scale of the baroclinic part of, say, the North Atlantic Ocean’s response to changes in the pattern
of wind stress is of the order of decades (see also § 3 below). The Somali Current is markedly
baroclinic; that is, there is a strong variation of velocity with depth, associated with horizontal
density gradients. Yet it comes into being, not decades after the winds over the northern Indian
Ocean change to the Southwest Monsoon pattern, but in a matter of a month at most.

It is important to investigate, therefore, whether a linear theory of dynamic response of the
Indian Ocean permits the baroclinic component of the western boundary current to approach
full strength in a time scale of order a month, in contrast to the estimate of decades for the North
Atlantic. The present paper indicates that proximity to the Equator does indeed cause the time
scale to be so greatly reduced. Unfortunately, observations of the time for establishment of the
Somali Current have not been made precisely enough in relation to the time of monsoon onset
to answer the question whether something like a month is actually needed, as the present theory
predicts, or whether by contrast it builds up still more suddenly.

For predicting other aspects of the ocean’s pattern of dynamic response, including amplitude
and general configuration, a linear theory might be expected not to be so effective, but is found
below to give results in quite reasonable accord with observation in the Indian Ocean. Nonlinear
effects should certainly be significant in the Western boundary current itself, where the general
character of the modification they bring about (a sort of inertial overshoot) is known from com-
parison of computed steady current patterns with and without nonlinear inertial terms (Bryan
1963 ; Veronis 1966); such modification would further improve the agreement with observation.
Elsewhere, nonlinear effects may be less important because typical current speeds are not large
compared with the speeds of propagation of baroclinic response, which are predicted as being
much higher near the Equator than elsewhere.

One of the simplest kinds of linearized equation for dynamic response, say to a wind force
(F, G) per unit mass of ocean (where the x and y directions are to the east and north respectively),
is that for a homogeneous ocean of uniform depth H with turbulent momentum transfer neglected.
For this simplified case, on the long-wave approximation, which is closely correct if (as we shall
assume) the radian wavenumbers of all significant forcing components are less than about
0.4H-' = 0.1km~1, the resulting horizontal velocity field (,v) is uniform with respect to depth
and satisfies (in the suffix-derivative notation)

utt_ﬁt = Ft+gH(uxac+vxy)’ (1)

Ve +fuy = G+ gH (U +0y,).- (2)
Equations (1) and (2) are time derivatives of the linearized equations of eastward and northward
momentum, respectively, the fluctuations of depth about the undisturbed value H being elimi-
nated through use of the equation of continuity.

The elimination of u from these equations is possible, even though it is essential in ocean-
current theory to take into account that the Coriolis parameter f has a positive gradient
B = df/dy in the northerly direction. It gives

Ve — gH V0, + 20, — gHfv, = Gy — fF, — gH (G — Fyy). (3)
6-2
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The terms in (3) without an f or g factor describe forcing of long waves in a non-rotating
system; these are the familiar waves with constant free-wave velocity /(¢f). In a uniformly
rotating system, the terms involving f are added, making the system dispersive, although still
isotropic, with a low-frequency cutoff for long waves below the Coriolis frequency f. By contrast,
in a system with g-effect (f > 0), waves of far lower frequency are possible; namely, the
dispersive, anisotropic Rossby waves.

When the radian frequencies w of all significant forcing components, and also the Coriolis
parameter f, are small compared with £/(gH), where £ is the lowest wavenumber of such a
forcing component, only the terms in (3) with the gH factor, that is, the classical Rossby wave
terms, are significant. Such a condition can be satisfied in the part of the Indian Ocean near the
Equator even if £ is as low as 1/(2000 km). For with a typical ocean depth H = 4 km, this gives
kyJ(gH) = 10~%s71, compared with which any radian frequency w less than 1/10h = 2.8 x 10~5s~1
is already small, while the Coriolis parameter f also is not more than 2.8 x 10-5s~ for latitudes
less than 12° (that of, for example, Socotra). Thus the linearized response of a homogeneous ocean
near the Equator may rather accurately take the form of Rossby waves, although at higher lati-
tudes the f2, term in (3) is potentially more important for forcing components of low wave-
number.

Under the conditions given in the previous paragraph, the terms carrying the gH factor
dominate not only in (3); equations (1) and (2), similarly dominated, allow us to deduce that
the divergence u,+v, is small compared with individual velocity gradients. Hence a stream
function ¥ can be introduced, satisfying approximately

'ﬁx =1, wy = —U (4)

The terms carrying the gH factor in (3) then take, after integration with respect to x and a
change of sign, the standard Rossby form

Vzwt‘kﬂww = Gx—Fy: (5)

relating rate of change of vertical vorticity to the curl of the applied wind stress. We may note
here, also, that Rossby’s ¢ f-plane’ approach which analyses equations such as (3) or (5) by
ignoring the curvature of the surface described by the (x, ) coordinates, and by taking £ constant,
is known (Longuet-Higgins 1965) to be particularly accurate near the Equator, where the (x, )
coordinates are locally geodesic and f is stationary.

The above equations for a homogeneous ocean, incorporating the unrealistic feature that
currents are distributed uniformly with respect to depth, are of more value than might be
expected for real oceans possessing stratification of both density and current velocity. A reason-
able linearized model of a real ocean is one based on small perturbations (whose squares are
neglected) to a stationary ocean with horizontal stratification of density (that is, with density de-
pending only on the vertical coordinate z), and with turbulent momentum transfer still neglected.
In this fairly well-known model (see, for example, Eckart 1960), a simplified analysis of which is
given for convenience in the Appendix, any distribution of the horizontal velocity (#,v) with
respect to depth can be expanded as a sum of normal modes, each with its own characteristic
distribution (proportional to ¢,(z); n = 0,1,2,...) with respect to depth; furthermore, the
coefficients of each of these functions ¢, (z) in (u, v) satisty precisely (1) and (2), provided that the
depth H is replaced by an ‘effective depth’ H,, characteristic of the mode in question.

As is well known, the pressure-dependent variations in density have no dynamical effect; only
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variations in the pressure-corrected density, here written p, that would at atmospheric pressure
be associated with the actual stratification of temperature and salinity, are influential dynamic-
ally. To a very close approximation (based on the fact that these density variations are at most
a few parts per thousand), the normal modes are as follows. The barotropic mode # = 0 has
¢o(z) = 1 (that is, current distribution the same at all depths) and H|, equal to the actual depth,
say HO, as for the homogeneous ocean. Thus the whole discussion for the homogencous ocean
given above applies without change to the propagation of the barotropic mode. However, the
first baroclinic mode already has effective depth H, of the order of 1 m at most, and the H,, for
higher n are very considerably smaller.

A classical Sturm-Liouville problem determines these baroclinic modes; in mechanical terms,
the values of (1/H,,) are the squares of the frequencies of a string stretched to unit tension between
z =0 and z = H° the mass of which in any interval Az is the decrease (—Ap/p) in relative
pressure-corrected density within that interval. There is, accordingly, a general tendency for the
1/H,, to increase in rough proportion to the squares of the natural numbers. The slope of the
string gives the distribution of current velocity ¢, (z) in the ath mode. It is uniform in any well
mixed region where p is unchanging (corresponding to a massless portion of the string). The
integral of ¢, (z) between surface and bottom is zero, so that there is zero net volume flow in
each baroclinic mode.

This is a special case of the fact that all the eigenfunctions ¢, (z) are orthogonal; not only to
the barotropic mode ¢,(z) = 1, but also to each other. Furthermore, any distribution of velocity
with depth, provided that it is uniform within any well mixed region, can be expanded as a linear
combination of the ¢,(z) for n = 0, 1,2, ..., whose coeflicients can be obtained from this ortho-
gonality property. Also, under conditions of forcing, any distribution of force per unit mass(¥,G)
with respect to depth can be similarly expanded, and (1) and (2), with H replaced by H,,, then
describe the relationship between the coefficients of ¢,(z) in (4,v) and (F, G) respectively. For
forcing at the surface z = H° by a wind stress (7,,7,), this coefficient of ¢,,(z) in (F, G) is

* ped(z) dz (6)
0

Since, under such forcing at the surface, the coefficient of ¢, (z) in (,v) satisfies equations with
(6) as the forcing term, the relative forcing effect of different modes on currents near the surface
may be estimated by multiplying (6) by the surface value of ¢,(z), namely ¢, (H?). Calculations
in the Appendix for oceanic models representing the northern Indian Ocean show this estimate
of relative surface-current response in different modes to be greatest for the first baroclinic mode
n = 1, about 7%, as much for the barotropic mode zn = 0, and less than 19, as much for the
higher baroclinic modes. This indicates the irrelevance of the higher baroclinic modes to any
explanation of the seasonal nature of the surface currents off the Somali coast; also in the
Appendix, their low relevance even to the distribution of current in depth is inferred from the
study of response times.

The neglect of turbulent mixing in the model may, as far as vertical mixing is concerned
(horizontal mixing is discussed below), be most serious near the free surface, where the sheared
Ekman layer generated by wind stress, and penetrating downwards a distance depending on the

T But we shall see (end of §4) that advantages of the barotropic mode over baroclinic modes with respect to
type of propagation partly counteract this big disadvantage with respect to forcing term.
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vertical exchange coeflicient and the Coriolis parameter, is ignored. If, however, this Ekman
layer lies within the well-mixed layer near the surface, as is usual, then the velocity independent
of depth within the well-mixed layer, which the model predicts, must represent a correct mean
value in the layer because the total rate of change of momentum due to vertical exchange
integrates to zero. Indeed, Stommel (1958) already showed how divergence within the Ekman
layer operates (by the mechanism since christened ‘spin-up’) to transfer the effect of wind-stress
curl to the whole of such a well-mixed region.

We may consider now how the wind-stress pattern associated with the onset of the Southwest
Monsoon excites both the barotropic and baroclinic modes of dynamic response in the Indian
Ocean. Although the main point of novelty is the predicted short time-scale of baroclinic
response, it is necessary to consider also barotropic response, as the Somali Current will be
viewed as a combination of the barotropic (z = 0) mode and of, in the main, the first baroclinic
(n = 1) mode. The arguments relating to barotropic response will be given first, since they
involve ideas which are relatively more familiar from the existing literature.

It has been pointed out already that the barotropic component of the velocity field (u, v) satisfies
the momentum equations (1) and (2), with A equal to the actual depth, provided that wave-
numbers of significant forcing components are less than about 0.1km—*; while, on the other
hand, if those wavenumbers exceed about 0.0005km~%, and associated frequencies are less than
about 0.1h~1, the Rossby equation (5) may be deduced as a good approximation near the
Equator. Remembering furthermore that, for a velocity field varying arbitrarily with depth, the
barotropic component is obtained by integrating from surface to bottom, we may say in the
barotropic case that (1) and (2) relate to momentum integrated from surface to bottom, and
that (5) is an equation for rate of change of ‘total vorticity’; that is, the vertical component
of vorticity integrated from surface to bottom.

Longuet-Higgins (1964) pointed out that Rossby waves, that is, those solutions of (5) with the
right-hand side replaced by zero which take a wavelike form, for example, proportional to

exp { —iwt +ilx +imy}, (7)

have the property that their group velocity has magnitude £/(/%+ m?) and makes an angle with
the eastward direction twice that which the wavenumber vector (/,m) makes. Pedlosky (1965)
pointed out furthermore that, in the common oceanographic case when the wind-stress curl
forcing the Rossby waves is distributed approximately zonally, waves with wavenumber vector
nearly north or south must in the main be generated, and therefore that their energy must be
propagated approximately westward. As far as the barotropic components of ocean currents are
concerned, this gives a clearer foundation for understanding the phenomenon of westward
intensification than do explanations based on particular approximate nonlinear and/or
dissipative steady-flow corrections to the equation of motion.

The onset of the Southwest Monsoon creates a region of strong negative wind-stress curl in
a zone centred roughly on the equator; across this zone, the eastward component of wind force /
changes from its negative value in the trade winds, somewhat south of the Equator, to a con-
siderably larger positive value in the monsoon itself, somewhat north of the Equator. Since the
zone possesses a much greater extent as regards longitude than as regards latitude, Pedlosky’s
arguments apply, and the ocean’s barotropic response, neglecting boundaries (whose effect will
be considered presently), consists mainly of waves with / much smaller than m, whose energy
moves roughly westward at speed f#/m% They leave behind a southward motion determined by
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the Sverdrup relation (steady form of (5)), balanced by an opposing northward flow which the
waves carry progressively farther towards the west.

This response, with boundaries neglected, is calculated in detail from the theory of group
velocity in § 2, but we may note here a simple explanation of the general behaviour in terms of
the properties of vorticity, When negative wind-stress curl is ‘switched on’ throughout a long
narrow zone extending along the Equator from 4 to B, at first it causes a build-up of negative
vorticity in the zone, generating eastward velocity on the north side of the vortex layer and
westward on the south side. The northward return flow near 4 convects planetary negative
vorticity into that region; continuation of this process permits a wave of negative vorticity (with
northward flow near its front) to propagate to the west. Meanwhile, a southward return flow
near B builds up, and finally becomes steady when it has reached the Sverdrup magnitude,
which balances by convection of planetary positive vorticity the creation of negative vorticity
by wind stress.

The westward propagation of a pattern of negative vorticity, preceded by northward flow, is
slowed down as it approaches a western boundary, essentially by the action of the image vorticity
behind the boundary. When a pattern of northward flux approaches the boundary, it tends to
pile up there in a stream that becomes gradually more and more concentrated near the
boundary, although at a gradually decreasing rate. The way in which a quantity of northward
flux 1, which would have reached a boundary x = 0 (say) at time ¢ = £, if the image vorticity had
not slowed down its propagation, thereafter proceeds to concentrate itself, is more and more

accurately represented by
¥ = Yo[L - {2V [Bx (1= 1)1}, (8)

a well-known exact solution, to (5) with zero on the right-hand side, whose graph is as in figure 1.

1—Jy(24/2)

14 5 10 ' 20 ' 30 = 40
Freure 1. Plain line: the function 1— Jy(24/z) appearing in (8). This indicates the modification, due to a western
boundary, of a flux in the form of a step function (broken line) incident upon it.

The way in which the concentration proceeds is that each element of negative vorticity, together
with its image in the boundary, produces northward flow between it and the boundary, con-
vecting planetary negative vorticity into that region, and so intensifying the negative vorticity
there. At the same time, southward flow to the east of the element convects planetary positive
vorticity into that region and so reduces any negative vorticity there. Figure 1 shows that, at
time /, this mechanism for moving the main pattern of negative vorticity nearer the boundary
has concentrated the whole flux ¥, into a region of width 1.4/8(¢—#,). There is a time lag of
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about 1 week (¢—1#, = 6 x 10%s) before this width is reduced to a typical value 100km charac-
teristic of the Somali Current or other western boundary currents;t this time lag has to be added
to the propagation time lag needed for the main northward-flow signal to arrive at the western
boundary.

Any of the mechanisms, used in the steady-flow theory to fix the width of western boundary
currents, can come into play after this time lag of about a week to prevent further constriction.
For example, it is shown in detail in § 2 how the horizontal-transport mechanism would do this.
Other mechanisms are nonlinear and cannot properly be applied to the barotropic component
alone, but may be none the less effective for limiting the further narrowing of the combined
barotropic—baroclinic Somali Current.

The Rossby-wave theory of propagation of the barotropic component of ocean currents has
been criticized for ignoring major perturbing effects of bottom topography, but such effects are
very much reduced near the Equator. The equations for the barotropic component have been
identified already as integrations from the surface to the bottom of conservation equations, either
for momentum, or in the case of (5) for vorticity. The modification that depth variation makes
to the left-hand side of (5),if 4 is taken as a stream function for the velocity field integrated from
surface to bottom, is an extra term

(JIH) (Hypy = Hy o) (9)

due to stretching of vertical vorticity as the barotropic component of flow, independent of z,
moves fluid into regions of greater depth. The importance of this term (9), relative to the beta
term in (5), is greatly reduced near the Equator, where | f]4] is least.

Actually, it will be shown in § 2 that attenuation of the westward propagating energy of waves
with |{| < |m| is produced, through the interaction term (9), principally if the bottom topo-
graphy includes Fourier components of relatively high radian wavenumber, around 1/(25km).
Only these make resonant interactions in which energy is transferred to wave modes propagating
it in substantially different directions. The relative smallness of the interaction term (9), coupled
with the fact that bathymetric data in the northern Indian Ocean (though admittedly incomplete
on a small scale) do not indicate notable fluctuations with wavenumbers of this order, suggests
that much of the barotropic northward flow pattern, which Rossby waves might, after onset of
the Southwest Monsoon, propagate to the west and cause to become concentrated near the
boundary, may actually be found there.

Our estimate of the time scale of barotropic response is, in any case, unaffected by these
uncertainties regarding its amplitude. A typical propagation speed f/m? associated with a
median wavenumber m = 1/(200km) characteristic of the north—south distribution of wind-stress
curl across the equatorial zone, is around 1 m/s. Some low wavenumber components of the signal
are propagated faster, but show a somewhat greater tendency to fan out in other directions
adjacent to the westward direction. The distance over which the influence of the Southwest
Monsoon has to be propagated before affecting the Somali Current is variable, but a median
value is around 2000 km, corresponding to a propagation delay (at the speed noted above) of
about 3 weeks. The total time scale for barotropic response (adding 1 week as noted already for
the process of concentration on the western boundary) becomes, in summary, about 1 month.

1 This statement, and equation (8), represent the theory in its simplest form, neglecting among other things
the angle (about 40°) of the Somali coast to the north-south direction, but the more detailed and accurate

discussion in §2, taking this angle into account, leads to identical conclusions with the predicted time lag revised
to about 10 days.
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Baroclinic response, at least in oceanic regions away from the Equator as studied in the classic
paper of Veronis & Stommel (1956), is expected to be far slower. This is because the effective
depth H for baroclinic modes is at most about 1 m, which means that in (3) the third term is at
least as important as the fourth. When all significant forcing components have frequencies small
compared with f (typically about 10-¢s~1in such regions), and wavenumbers small compared with

S(gH)~% (typically about 0.03 km~1, or more for the higher baroclinic modes), the first two terms
are much smaller than the third, and (3) becomes approximately

fzvt—gHﬂvw = Gtt _ffrt_gH(wa—ny% (10)

a simple first-order equation whose solutions all propagate to the west with a uniform velocity
gHp|f?. These are Veronis & Stommel’s ‘non-dispersive baroclinic Rossby waves’.

Even without any restriction on wavenumber, the westward component of group velocity can-
not exceed this value gHp/f2. For example, waves excited by wind stresses with a predominantly
zonal distribution have group velocity directed nearly westward, with magnitude

B
n s (Y’ -
which as m decreases makes a transition from the barotropic value £/m? to the uniform value
gHPp[f? but never exceeds the latter. This maximum speed of propagation of signals to the west
(attained for signals of small wavenumber) is plotted as a function of latitude in figure 2 for a
typical value H = 1 m corresponding to the first baroclinic mode (speeds for higher modes would
be much less).

10 T
0 20° 40° 60°
1 1 i 1 1 I 1 3
N latitude
N
o]
014

Ficure 2. Maximum value, gHf/f?, of the westward component of group velocity of baroclinic waves of sinusoidal
form, plotted in m/s on a logarithmic scale as a function of latitude, for the » = 1 mode with effective depth
H=1m.

At high latitudes values are seen to cluster around 0.01 m/s, already twe orders of magnitude
less than the value quoted above for barotropic modes of wavenumber 1/(200km). This leads
to a characteristic timescale of baroclinic response in such latitudes that is typically a decade
rather than a month. By contrast, the speed rises above 0.1 m/s only for latitudes less than 19°,
and attains 1 m/s only at latitude 6°. The last figure indicates a possibility (to be followed up
below) that rather rapid response of the first baroclinic mode may occur in equatorial regions,
where however the wave velocity (11) deduced for constant fis far too variable with latitude
across a wavelength to have any real significance even as an approximation.

7 Vol. 265. A.
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Before considering the refinements necessary to overcome this difficulty, it is of interest in
relation to non-equatorial regions to identify the physical significance of the simple first-order
equation (10) for low wavenumber response in the first baroclinic mode. The quantity v, either
in (3) orinits approximate form (10), represents the coefficient of ¢; (2) in the northward velocity.
Here, ¢,(2) is a velocity mode with only one zero, negative in the denser part of the ocean and
positive in the upper less dense part; the shear region between them is predominantly (as the
‘string’ analogy given earlier implies) where the density gradient is greatest. Thus, positive »
means northward flow near the surface, balanced by southward flow near the bottom.

Propagation of such a positive value of v is shown in § 3 to occur as follows. The f-effect tends
to lower the level of the region of greatest density gradient if v is positive, so that absolute vorticity
may be conserved, as vortex lines in the upper northward moving fluid stretch vertically to
compensate for the decreasing angle they make with the vertical, while those in the lower
southward moving fluid, whose angle with the vertical is increasing, decrease their vertical
extent. If to the west, however, the level of the region of greatest density gradient has not yet
fallen, there must result a tilting of density contours, which produces positive » on that side as
demanded by the relations for baroclinic steady flow; and so the region of positive » gradually
propagates towards the west.

Application of this theory to the North Atlantic, say, may give only a rough order-of-magnitude
time scale of response, because the wave velocity predicted (of the order of 0.01 m/s) is so small
that any westerly advection of vorticity might significantly supplement it (although hardly
increasing its order of magnitude). Bottom topography might also be significant, although less
so than in the barotropic case since the ratio of bottom to surface velocities is small in the baro-
clinic mode if the region of greatest density gradient is much nearer the surface than the bottom.
Tt is reasonable to infer from the theory, however, that response of the North Atlantic to changes
in wind stress from month to month is such that in the Gulf Stream some associated barotropic
changes, but practically no baroclinic changes, would result.

In an attempt to increase understanding of westward intensification by extending the transient
motion reasoning of Pedlosky (1965) to baroclinic components, equation (10) may be used with
a zonal distribution of negative wind-stress curl ‘switched on’ at time ¢ = 0. The solution, to
close approximation (§ 3), is a southward flow pattern satisfying the baroclinic analogue of the
Sverdrup relation, plus an equal and opposite northward flow pattern which propagates steadily
to the west at speed gHp/f2. When the whole northward flow pattern has finally reached the
western boundary, effects similar to those in the barotropic case cause it to cease propagation
and form a concentrated stream, reinforcing in the upper part of the ocean (but reducing in
the lower part) the barotropic concentrated stream formed much earlier.

On this simple linear theory, higher baroclinic modes would, at much later times, successively
appear also. When they had all appeared, the different current modes would be found each in
proportion to (6), just as in the representation of surface forcing by wind stress, so that their sum
would reconstitute a function concentrated very close to the surface. But the conclusion that
currents would be so concentrated cannot be drawn for the real ocean; to set up those higher
modes would take an exceedingly long time, before which the first mode would have generated
major nonlinear disturbances; for example, the steady baroclinic motion (southward near the
surface) set up by wind stress of the order of magnitude found in the North Atlantic demands
such a tilt of density contours from east to west as to give them a height variation of order 1km
over the width of the ocean. Such considerations make it not too surprising that the observed
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form of wind-driven current is rather more like the sum of a barotropic and a first baroclinic
mode.

Difficulties of this nature are much less when similar considerations are applied to the Somali
Current; in the time scale on which it appears and disappears the higher baroclinic modes do
not have time to be more than marginally excited; furthermore, in such an equatorial region
velocities of propagation of the first baroclinic mode are not nearly so small (for reasons already
hinted at), although the disturbance amplitudes they carry are about the same, and therefore
nonlinear effects are less likely to dominate. Accordingly, a simple linear theory of baroclinic
response of an ocean at rest to the onset of a wind-stress pattern similar to that of the Southwest
Monsoon is given in §§ 3 and 4, for the purpose of estimating what current changes are produced
by that onset.

As already stated, the possibility of fast westward propagation at low latitudes is limited by the
fact that the velocity (11), whose value (figure 2) for m = 0 increases near the equator to such
high levels, can attain them only for rather small m, such that the speed (11) does not remain
sensibly constant over a north—south distance even of order 1/m. Actually, (11) remains sensibly
constant only in an equatorial belt whose width is a modest fraction of m(gH)%/B, since
df/dy = f. This is already less than 1/m (so that a theory approximating locally by using a wave
velocity calculated with f constant has become quite untenable) if 1/m exceeds a fraction of
(gH)%/p% (which we may therefore expect to be the fundamental length scale for baroclinic
propagation near the equator). A fraction of (gH)? is suggested as the maximum possible west-
ward propagation velocity (11) by these very crude arguments.

For a more satisfactory study of baroclinic propagation near the equator, it is essential to
allow for the variability of fin (3). Nevertheless, £ may be taken constant, and freplaced by Sy,
since their departures from these values over distances of the order (gH)#*/#% (which for H = 1 m,
approximately its maximum value, is 370km) are negligibly small. With these substitutions,

(3) becomes Ve — gHV 20, + B2y, — gHp, = Gy, — Py F,—gH (G, —F, ). (12)

Yy
Equation (12) is solved in § 4, for a wind-stress distribution representing the Southwest Monsoon,
after the fundamental modes of propagation (namely, the solutions proportional to
exp { —iwt +ilx} of equation (12) with the right-hand side replaced by zero) have first been studied
in §3.
These fundamental modes satisfy
w? Bl B2
O _p_ PP e, =
vW_I_(gH [ > gHy)v 0. (13)

A solution of (13) is concentrated near the equator (rather than becoming exponentially large
as y tends to either + 00 or — oo or both) only if

%—lz—%: (2M+l) \/(gH) (M= 0> 1, 2> ) (14)

The associated solutions of (13) are the parabolic cylinder functions (otherwise well known as

the harmonic-oscillator wave functions, taking the form of Hermite polynomials multiplied by
exp {— :By*(gH)t}). Equations (13) and (14) were noted already by Blandford (1966) in a
general survey of baroclinic modes of propagation. He referred to a peculiarity of the A = 0
mode (which in westward propagation would have a velocity of (gH)?* exactly) but did not

7-2
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observe the important fact (§ 3) that propagation in this mode is actually not possible.t This is
because, although a solution for v that is concentrated near the Equator exists for M = 0, (1) and
(2) show that no such solution for « exists. Rather, in the M = 0 case, « must become exponenti-
ally large away from the Equator.

The only true propagating modes concentrated near the Equator, then, satisfy (14) for
M =1,2,3,.... Each has a westward group velocity that is greatest when the east-west wave-
number / is small compared with g%(gH)~* > 1/(370km), as is probably mainly the case for
forcing by the monsoon type of disturbance. In such a case, non-dispersive westward propagation

occurs at a velocity (gH)Y (2M +1), (15)

which is given by neglecting the first two terms in (14) (corresponding to neglect of the v, and
V44, terms in (12)). Thus, a first signal from any disturbance arrives at a speed }(gH)?* (corre-
sponding to M = 1), which with the estimated value /' = 0.75m obtained in the Appendix for
the n = 1 baroclinic mode in the equatorial Indian Ocean is 0.9 m/s, matching the typical baro-
tropic propagation velocity quoted earlier; a second signal arrives at a speed 1(gH)? = 0.55m/s,
and so on. These speeds suggest the possibility of good results on time-scale of baroclinic response,
and encourage us to pursue to model further.

Returning to the equation (12) for forced motion, then, we begin by expanding the forcing term
on the right-hand side as a function of y in a series of normal-mode solutions of (13), that is, the
solutions satisfying (14) for M = 0,1,2,.... The forced velocity component v is also expanded
in such a series. Each coeflicient in this series satisfies a certain partial differential equation with
x and ¢ as independent variables. We find that the solution for M = 0 incorporates no westward-
propagating wave, in agreement with the earlier conclusion that no such wave exists for 44 = 0.
The solutions for M > 0, however, each incorporate a westward-propagating wave.

The equations are made nondimensional by use of the following units of length and time:

length (gH)% (28)~%, time (gH)~%(28)~%. (16)

For the first baroclinic mode (z = 1), typical values of these units, using H = 0.75m, are 250 km
and 1 day, respectively. Provided that in these units the frequencies and east-west wavenumber
of significant forcing terms are small, as they probably are for the onset of the Southwest
Monsoon, the equations for the coeflicients »™ of the Mth normal mode in the north-south
distribution of v, in terms of the corresponding coefficients / for the eastward component of
wind stress F, take the simple forms

v~} = Fz—F, (17)
g — vy = — R — I+ 2(17 — 1), (18)
502 =12 = — Fa—F{ + 3(F3—F}), (19)
Evidently, (17) has the solution v° = — F,, representing a purely local response to the wind-

stress field without any propagating component. However, (18), (19), etc., have solutions much
more similar to that found in the barotropic case, involving a local response and a balancing
motion that is propagated westward at a constant speed, whose value is 1, 4, etc. of the basic unit

+ By contrast, Matsuno (1966), in a paper to which the author’s attention has been drawn by a referee, has

made the corresponding calculations for a barotropic ocean without missing this point. See also Longuet-Higgins

(1068).
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of speed (gH)* = 2.7m/s. The first signal (term in ») arrives, as predicted earlier, at a speed of
0.9m/s, close to that which we regarded as typical of barotropic propagation; and, as in that
case, all the signals on reaching the coast are predicted to cease propagation and become con-
centrated, with a time lag of about a week to 10 days, in a narrow region.

The sign of the first (M = 1) signal is positive, essentially because the F2 termsin (18) dominate
over the FOterms. The F° terms would be more important only if the region, where the eastward
component of wind stress is strong, extended to less than 150 km north of the equator, whereas
all the evidence suggests that it starts considerably farther north than this. The earliest arriving
signal (M = 1) in the first baroclinic mode (r» = 1) is thus predicted to be symmetrically distri-
buted with northward flow north of the equator and southward flow south of it. The barotropic
signal (n = 0), however, arrives at about the same time and is entirely northward, enhancing (as
far as surface currents are concerned) northward ones and reducing southward ones.

Only a little later, the second equatorial mode (M = 2) should arrive and further disturb the
symmetry, helping to increase the correspondence with the high degree of asymmetry actually
observed. Its sign is negative because the F! terms in (19) dominate over the F* terms. The
surface boundary current generated by this signal is northward from 3°S to 3° N and southward
outside this interval.

The reasonable accord with observation as regards time scale and type of boundary-current
response suggests that it may be worth while to attempt an amplitude prediction for comparison
with Somali Current data. This might seek to establish whether, during the month needed for
the propagated effects of wind stress at large distances (of the order of 500 to 2000 km) to generate
substantial boundary currents, the predicted current magnitudes could become comparable
with those observed. An attempt to do this is made in § 4.

This does not include any attempt to calculate the effects of purely local wind stress, acting
within 500km of the coast, for which the present method of normal mode expansion would
probably be much less suitable. It concentrates, in fact, on the effect of onset of SW winds within
a region north of 2° N and east of 50° E. The conclusion is that, if the speed of those winds is as
much as 14 m/s, then the surface element (including the baroclinic, and smaller barotropic, com-
ponents) of boundary-current flux will already have reached 409, of the strength typically
observed after 1 month (of which 22 days represents time needed for propagation, and the
remainder time for concentration, of the flux).

This amplitude prediction is thought reasonably satisfactory; error by a factor of 2.5 is hardly
excessive in ocean-current predictions, and much of the shortfall could well be made up by the
effect of local winds. Furthermore, the most reliable flux observations have all been made after
a time lag considerably exceeding 1 month. The current pattern predicted (figure 6 below) is
also reasonable, giving baroclinic flow that is northward on the surface for —0.4 <y < 2.7,
corresponding to latitudes from about 1°S to 6° N.

It is perhaps a merit that this model predicts a western boundary current whose baroclinic
component is northward at the surface up to a certain latitude (6°N) and southward beyond,
implying separation of the current there, even though no geographical feature is present to
promote such separation. Actually, this sort of separation occurs, but at 9°N; however, two
features can be regarded as likely to move the point of separation to such a greater northern
latitude. One is the barotropic component, which is predicted, on the other hand, as relatively
weak. Another is inertial overshoot; computations like those of Bryan (1963) and Veronis (1966)
indicate that nonlinear inertial terms, when included, cause boundary currents to continue in
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concentrated form over rather greater distances than when they are omitted (owing, presumably,
to propagation effects being somewhat supplemented by advection).

The author has studied one more possible extension of the theory, to include the influence of
any equatorial undercurrent, preliminary work being based on the incorrect hypothesis that
the undercurrent might, in the Indian Ocean, be assumed generally similar to that which has
been studied much more thoroughly (see, for example, Knauss 1960) in the Pacific. It seemed
important to check whether such an undercurrent might alter the propagation of the baroclinic
equatorial modes in such a way as to increase the estimates of response time or in other ways
substantially alter the conclusions. Because such an undercurrent is an eastward flow con-
centrated near the level of the thermocline it might especially affect the first baroclinic mode
(n = 1) by advection of those horizontal vorticity patterns distributed around the thermocline
whose propagation is the main activity of that mode.

Dr J. C. Swallow, has, however, pointed out to the author that present evidence (Swallow
1967) indicates no significant equatorial undercurrent in the Indian Ocean during the northern-
hemisphere summer. For this reason, no detailed investigation of the influence of such an under-
current is included in this paper. It may, nevertheless, be worthwhile to conclude this Introduc-
tion with a brief indication why even an undercurrent on the scale of that in the Pacific, with a
peak velocity a little over 1 m/s, would not significantly alter the present conclusions. Eastward
advection, at a velocity rising to such a peak, of a horizontal vorticity pattern situated around
the thermocline, might be thought to reduce greatly the speed of westward propagation (at a
little less than 1 m/s) of the equatorial baroclinic modes. Because, however, the undercurrent is
concentrated in a narrow stream, about 200 km wide, estimates appear to indicate that propa-
gation of these modes would be only slightly altered by such advection.

For such estimates, we may define U(y) as the eflective undercurrent speed for transport of
horizontal vorticity on a parallel of latitude a distance y north of the equator. Then the left-hand
side of equation (12), simplified by omitting vy, and v,,, terms when characteristic east—west
lengths and times are much greater than the units (16),is modified by the inclusion of an advection
term to become

0 0
~H (54 U) 32 ) v+ 20— gHp. (20)

On this approximation, equation (15) for the fundamental modes becomes

w

Here, because //w is negative, the coefficient of v, everywhere exceeds 1; accordingly, there is
no singularity of the Orr—Sommerfeld critical-layer type, due to vanishing of this coefficient.
Physically, this is because the direction of local streaming is opposite to the direction of propaga-
tion; thus, as the vorticity pattern undergoes propagation to the west, the advection of individual
elements of vorticity to the east simply redoubles the importance of the first term in (21), which
represents the discrepancy between them that must be balanced by planetary vorticity shifts.
As far as the shape of the function v(y) representing an equatorial mode is concerned, we can
conclude from (21) that its curvature |v,,| is reduced substantially, in a small interval around
y = 0, below what it would be without advection. This makes little difference to the modes with
M =1,3,5,..., for which v,, vanishes on the equator in any case. In particular, the response
time based on the mode (M = 1) with greatest propagation speed is practically unaltered.
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The effect on even modes v(y), however, is to flatten them very considerably for small y. This
brings about a somewhat reduced speed of propagation; also, it pushes farther north the zero of
v(y) where northward flow changes to southward. The total changes to earlier conclusions are,
however, small even quantitatively, and the fact that nothing like so pronounced an under-
current is actually observed during the northern hemisphere summer suggests that still smaller
changes would really arise due to this cause.

To summarize this long Introduction, then, in two sentences, it is adequate in the present
state of observational knowledge of winds and currents in the Indian Ocean to use simple linear
theory to estimate what changes in current field can arise from wind-stress changes associated
with monsoon onset, and to suppose that associated changes in flux reaching the Somali coast
become concentrated in a boundary current. Measurements of the changes are still not complete
enough to permit detailed comparison with the results of this theory, but a preliminary rough
comparison is encouraging.

2. BAROTROPIC RESPONSE

It was noted in § 1, and explained in more detail in the Appendix, that the linearized baro-
tropic response (z,v) of an ocean to an external force (F, G) per unit mass is effectively uniform
with respect to depth, and satisfies equations (1) and (2) (with H equal to the actual depth of the
ocean); furthermore, these imply (4) and (5), that is

tﬁz:v; ¢y:_u, V2¢t+ﬂ¢w:Gz_Fy: (22)

under conditions which exclude very rapid changes (with characteristic radian frequencies
greater than about 0.1h™') or very low wavenumbers (less than about 0.0005km~—! in the
equatorial case). Since in an arbitrary response of the ocean the barotropic component is. the
integral of the horizontal velocity with respect to depth, divided by the depth, (22) can be
regarded as a statement of how fast the total vorticity (integrated from surface to bottom) changes
as a result of vorticity generation by wind stress and of convection of planetary vorticity.

The properties of the Rossby waves, which satisfy

V& + B, = 0, (23)

were briefly recalled in § 1. The group-velocity property (Longuet-Higgins 1964; Pedlosky 1965)
is particularly important for waves generated by forcing within a limited region. Lighthill (19635,
1966, 1967) described methods of calculating the Rossby waves generated far from an arbitrary
forcing region, in the absence of boundaries. He emphasized that characteristic frequencies and
wavenumbers of the forcing effect are very influential in determining what kinds of waves are
produced, and where; a travelling forcing effect satisfies certain relationships between frequencies
and wavenumbers which are particularly influential in this sense.

The present work uses on (22) methods of this general type, but modified slightly because its
right-hand side is significantly large in a region whose east-west dimension is much greater than
its north—-south dimension. Particularly for transient problems like the subject of this paper, such
a solution (which we call ;) for an unbounded ocean is a valuable step towards obtaining the
solution for a bounded ocean, which we write

Y =dyt+ys (24)

Since ¥y as well as i satisfies the equation for forced Rossby waves, (22), it follows by subtraction
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that ¢y (representing the ‘reflexion’ of the wave group from the coast) satisfies the equation for
free Rossby waves, (23). It isindeed the solution of (23) satistying the condition

Yy = —%y on the boundary, (25)

which expresses that there can be no barotropic flow across the boundary.

The wind-stress curl in (22), G, —F,, tends to be dominated by the second term because,
although the wind-stress components /' and G are comparable in the Southwest Monsoon,
y derivatives (gradients in the north-south direction) greatly exceed x derivatives. The region
of high wind-stress curl is where the eastward component of wind stress changes from its moderate
negative values south of the equator to large positive values somewhat north of it. It is a zonal
region whose characteristic dimensions are of the order of 30° of longitude by 5° of latitude.

For obtaining the oceanic response to such a pattern of wind-stress curl, Fourier analysis in
terms of m, the y component of wavenumber, is useful, especially because we are interested in
propagation of effects over distances large compared with 1/m, which permits the use of approxi-
mations of the group-velocity type. By contrast, the large characteristic values of 1//, the
reciprocal of the x component of wavenumber, make the idea of the location of a wave packet
with respect to x within the Indian Ocean somewhat too fuzzy. Accordingly, the waves generated
are Fourier analysed only with respect to y, by putting

Vo = f " e W myt)dm, G,—F, = f * ey Clx,m, ) dm, g = f ® etmy d(x, m, £) dm.
) (26)

In fact, because we are concerned mainly with response to the change in wind-stress curl
associated with monsoon onset, we take C(x,m,t) as the Fourier transform of the difference
between the value of G, — F, at some time ¢ and its value at a time ¢ = 0 just before monsoon
onset; and similarly with ¥. Then the equation satisfied by ¥, namely,

%(Tww—mzyj) +ﬂgj:t = C: (27)

can be solved by the Heaviside p-operator method appropriate to a transient problem, where the
forcing term C vanishes for ¢ < 0 and we look for the solution that vanishes for ¢ < 0, representing
the change in ocean-current pattern arising from the changes in wind-stress pattern.

Thus, (27) is rewritten W+ (Bp) B, —m2¥ = Cjp, (28)

in Heaviside notation (those more familiar with Laplace transforms can regard the ¥ in (28) as
p time the Laplace transform with respect to ¢ of the ¥ in (27)). We are especially interested in
the solution of (28) with C independent of p, representing step-function onset of the monsoon
winds, because this case can give useful information on time-scales of response, and because,
if this case is worked out, the response to wind stresses changing more generally with time than
in step-function fashion can be obtained by convolution.

Complementary functions for (28) are e*® and e*2* where

_ £ 2 3 . £ 2 3
eyt () s hm g () (2
and in terms of these the solution for ¥ (corresponding to the unbounded ocean) is
Y= ——[e"lwf CX) e—"IXdX+e"2’”J\x C(X) e—"ZXdX]/[[)(Alw)tz)]. (30)
X -
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For understanding time scale of response, we need to know how this solution develops after an
extended period of time, which may be generally expected in a Heaviside treatment to be given
by the behaviour of (30) for small p. Since, as p— 0, equations (29) give

/\1 Npmz/ﬂ, /\2 ~ —ﬂ/l’: (31)

the corresponding behaviour of (30) for small p is
Y=g f wc( X) eomip (X0 4 X — p-1 f K C(X) e m@-3dX, (32)
xT — 00

but the second term in (32) appears likely to be progressively more insignificant (since it tends
to zero as p—0).
On the other hand, the Heaviside interpretation of the first term in (32) is

Y= ~ﬂ‘1wa(X)H[t—(m2/ﬁ) (X—#)]dX, (33)
where H(¢) is Heaviside’s unit step function, and (33) gives

z+(BIm*)t
wo g f C(X)dX, W, = fC(x)— B2CLx+ (Blm?) ). (34)
x

Here, ¥, is the Fourier component of the northward velocity » which has north-south wave-
number m; in its expression the term -1C(x) represents a steady local response related to the
wind-stress curl by Sverdrup’s law. On the other hand, the term — S=1C[x 4 (8/m?) {] represents
an equal and opposite response propagated to the west with velocity f/m?, which, as expected, is
the group velocity for wave groups with east-west wavenumber / small compared with m.
A physical interpretation of these conclusions in terms of vorticity was given in § 1.

When ¥ and its Fourier transform yry; have been obtained, by the methods briefly introduced
above and further refined below, ¥z must be obtained as the solution of (23) satisfying the
boundary condition (25). If, as the above arguments indicate, non-zero values of ¥y are found
only within the part of the ocean where wind stress operates and (owing to propagation) to the
west of it, this condition ¥z = — 3y will specify non-zero values for ¥z only on the western
boundary. The calculation of the solution from those boundary values is easiest of all if the
western boundary is a meridian (whose equation without loss of generality may be taken as
x = 0); the calculation is given first in this case, and later extended to boundaries at an angle
to the north-south direction.

By the equations (26), the Fourier transform @ of rp must satisfy

P=-¥Y on x=0, (35)

as well as a differential equation which is (28) with zero on the right side. Solutions of this
differential equation which do not increase exponentially as x increases (that is, in the eastward
direction) are all proportional to e2® by (29). Hence, for all x > 0,

D = — (P),_, e (36)

Evidently, the Heaviside interpretation of e*2? is of great importance; the value of @ for a step-
function change in (¥),_, is proportional to this, while more generally @ is minus a convolu-
tion of (¥),_, with the Heaviside interpretation of e,

8 Vol. 265. A,
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The former simplified arguments, which included the asymptotic forms (31), indicate that
this Heaviside interpretation for large ¢ behaves like that of e #*/?| which is known to be
Jo[24/(fxt)]. This falls from 1 at x = 0 to zero at x = 1.4/f¢in a progressively thinning boundary
layer, outside which it oscillates about zero and its gradients are much less. These simple argu-
ments, if they are reliable, give an answer independent of m; they imply, therefore, that the
functions ¥ and ¥y, of which @ and ¥ are Fourier transforms, possess a similar relationship;
namely, that yr;; is minus the convolution of (Yy),_, with a function which for large ¢ is asymp-

totically Jy[24/(fxt)].
We can write this relation

Vi~ "f 0 T2 [Bx(t = 1)1} d(¥ri) oo, ety (37)

meaning as explained in § 1 that each new element of northward flux ,, which would have
reached x = 0 at time ¢ = ¢, had the boundary been absent (so that i, represents a change in
(¥r5) »—0) Produces a reaction ¥ which is asymptotically — v, Jy{24/[Bx(t —1,)]}. Within the
thinning boundary current (once its thickness is small compared with any east-west distances in
which ¢y changes significantly) we may add ¥, to this to obtain the total contribution to the
stream function ¥ = ¥y + ¢ in the form written in § 1 as (8) and depicted in figure 1.

Thus, all the flux which is propagated to the western boundary ‘piles up’ there in a continually
thinning boundary current, and figure 1 shows the process of concentration of an element of
flux ¥, arriving at time #,. Essentially, the whole flux is confined, when ¢— ¢, has become large
enough, within a current of width 1.4/[#(t—1,)]. The physical interpretation of this process in
terms of vorticity was given in § 1. Here, some further critique of the approximations involved
is given.

The accurate form of the Heaviside interpretation of ez is

1 c+ico dﬁ
[ pl+Agx “47
27T1 c—iw € 2 p > (38)
where ¢ > 0. To obtain rigorously its asymptotic form as ¢ oo, it is necessary to bend the path
of integration into the form of loops around the singularities of the integrand, which by (29) are

at p = 0 and at p = +1f/2m. The asymptotic form is in three parts, therefore:

N 2 —i
1 ©0+) ptilan clg + 1 (i4/2m+) ept-+is d_p +- L ( lﬂ/2m+)ept+)t2x éﬁ (39)
— *OO P 2m)_ b4

271 ) _ o P 2mi
The first part of (39) is asymptotically evaluated in terms of the behaviour of the integrand as
p—> 0, which to the approximation given in (31) yields
1 (o
| AN )] (40)

27 ) _ o

To the next approximation A, is — (f/p) — (pm?/f#) which puts an extra factor e=?™**/£ into the
first part of (39), which simply shifts the #-origin to give

Jo{2y [Bx(t —m*c|)]} (41)
as a still closer approximation for large ¢. Once the boundary current has become thin, this is a
small correction within it. For example, if we are interested in the time taken for the thickness of
the boundary current (value of x for which (41) first vanishes) to be reduced to 100 km, the
first approximation (40) gives 1.4/8x = 6 x 10°s and the second approximation (41) adds xm2/g,
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which for the median wavenumber m = 1/(200km) (see below) is 1.1 x 105s. This confirms
that variation in the boundary response with m is only slight after about a week. Essentially, a
boundary layer is then formed, within which the x-derivative terms in (27) greatly exceed the
m? or y-derivative term.

The second and third loop integrals in (39) make asymptotic contributions that are relatively
unimportant compared with (41). Because the loops embrace the singularities p = +i8/2m,
each represents waves of radian frequency £/2m. From this value of frequency, or from the fact
that A, = + im at the singularities, we infer that these waves have [ = + m (crests at 45° to parallels
of latitude), and group velocity in the north—south direction (parallel to the coast). By applying
Watson’s lemma to the integrand (approximated in the neighbourhood of each singularity in
the usual way), we deduce that the amplitude of this wavy contribution to the Heaviside

interpretation of e*2® is (2/m)% (mx) (2m/Bt)%. (42)

Its radian frequency, for a median wavenumber m = 1/(200km), is 3/(2m) = 1/(5 days).

The relative unimportance of this wavy contribution, compared with the contribution (40)
which falls from 1 at x = 0 to 0 at ¥ = 1.4/, is clear from two considerations. In the first place,
once f exceeds 5 days, the term (2m/At) is already less than 1 and continues to decrease fairly
quickly thereafter, while within the thinning boundary current mx is already less than 1 and also
decreasing, and the factor (2/m)% = 0.8 further reduces the amplitude for large ¢ In the second
place, the fact that this contribution is wavy in nature reduces its total effectiveness by destructive
interference. Thus, whereas different elements of flux with the same sign that reach the boundary
at different times make contributions to the integral (37) that add up constructively, the
analogous integral (an integral with respect to both #, and m) for the wave contribution must be
subject to a great deal of destructive interference.

To sum up then, a linear theory neglecting turbulent transport of momentum yields the quite
reasonable result, that any northward barotropic flux reaching the coast must beome concen-
trated after about a week in a boundary current of thickness about 100 km, but adds to it the
unacceptable result, that the thickness will continue to decrease thereafter like 1.4/8 (¢t —#,). Real
boundary currents do not become indefinitely thin, and we know from the steady theory of
western boundary currents that their thickness may be forced in the steady state to take a fixed
value by nonlinear effects or horizontal turbulent transport or both. We may expect that these
influences, when present in the unsteady problem, limit the continual reduction of thickness and
cause it to tend to a definite non-zero value.

It would be difficult to demonstrate this for the nonlinear effects, and hardly correct to attempt
such a demonstration in relation to the barotropic component by itself; but a demonstration can
easily be given in the linear case with horizontal mixing specified by a uniform eddy viscosity ».
Then iy satisfies (23) with an extra term »V4)r, representing horizontal diffusion of vorticity, on
its right-hand side, and its Fourier transform @ therefore satisfies, in Heaviside notation,

D(Pyy—m*P) + [P, = v(3?|0x* —m?)* . (43)
Horizontal mixing allows the satisfaction of the no-slip condition on the boundary, so that
condition (35) is replaced by two conditions
=-¥Y and &,=-¥, on x=0. (44)
Solutions of (43) proportional to e*® exist when
p(A2—m?) + A = v(A2—m?)2% (45)
8-2
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For all p in the right-hand half-plane, there are always just two roots of (45) with negative real
part, which will be called A3 and A, This is obvious when || is large enough, these two roots
being close to —m and to — (p/v)} (and the others close to +m and + (p/v)?). Furthermore, if
any curve in the right-hand half-plane existed where the number changed from two to some
other value, then at any point on that curve A would be able to take some pure imaginary value i/,
whence by (45) p must be equal to

— o4 m?) + (i) (B 4 m?). (46)

This is a contradiction, since (46) is in the left-hand half-plane.
This pair of solutions es® and e+?, which remain finite as x increases, can be combined into
a solution of (43) satisfying the conditions (44), namely,

D = [(¥)oo(Ag '™ — A3€M4%) + (W) 5o (eM17 — €17) ] /(A5 — Ay). (47)

This is a regular function of p in the right-hand half-plane. When [p| > (4%)%, one root A; of (45)
is close to A, (see (29)), while the other, A4, is much larger, being near —,/(p/v). Under these
circumstances @ is close to the value (36) without horizontal transport. Since at all times
t < (B2v)~% a steepest descent contour for the Heaviside interpretation of (47) remains in the
part of the plane where |p| > (B2v)3, the conclusion deduced earlier about the form of the thinning
boundary current are still approximately valid at those times.

At later times ¢, however, the Heaviside interpretation of (47) depends more and more on its
behaviour for very small p, when the roots A3 and A, of (45) are complex conjugates, close to

(Blv)ketim, (48)

provided that this is much bigger than m. Asymptotically for very large ¢, the Heaviside interpre-
tation becomes equal to the value of (47) for p = 0, which is a steady boundary current of the type
first studied by Munk (1950); on the approximation (48), it is given by

P = — (¥)o—oexp[ — $(Bv)¥x] {cos[(5y3) (BIv)}x] + (1/y3) sin[(§y3) (B/v)ial}.  (49)
(The terms in (¥,),—o have not been written down here because they would be insignificant in
the usual case when this quantity is small compared with A; or A, times (¥),_,.) As (49) is
independent of both ¢ and m, the same relationship holds asymptotically for the Fourier
transforms yrg and ¥y,

With horizontal transport accounted for, then, the western boundary current continues to
thin like 1.4/A¢ until this begins to be comparable to (v/8)* (that is, until # is comparable with
(p2v)~%), and then it asymptotes to a constant value, which according to (49) is about 2.4(»/8)3.
Although the thinning ceases, the total flux incident on the western boundary remains con-
centrated] thereafter in this narrow current. It seems reasonable to suppose that, if other
mechanisms productive of a definite boundary-current thickness in steady flow were taken into
account, the thinning boundary current in unsteady flow would similarly asymptote to that
thickness, with all the incident flux again trapped within it.

With this background, a return to the problem of estimating r; through its Fourier transform
¥ is now useful. The important thing to estimate correctly is how ¥ ; varies on the western
boundary itself, since the effect of Y3 is mainly to cause the flux represented by ¥ to be concen-
trated (with only a relatively short time lag) into a boundary current. For estimating ¢y or ¥
on the western boundary x = 0, it is exact to neglect the second integral in equation (30) or its
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approximate form (32), because C(X) is non-zero only for X > 0 (there is forcing only to the
east of the boundary).} Thus,

(P)omo = ~[ps =21 [ C(X) e %X, (50)

The simplest estimate of time-scale of response comes from the asymptotic form of (50) given

in (34), which with x = 0 becomes :
t/m®

(o= -4 [ OX)AX. (51)
This has reached half its ultimate value when the integral of the wind-stress curl’s component
of wavenumber m is just half as much from 0 to f¢/m? as it is from 0 to co. Thus, f¢/m? is, in this
sense, a median distance from the western boundary of those components of wind-stress curl.
Such a median distance for characteristic Southwest Monsoon winds in general would appear
from climatic charts to be about 2000 km. The low wavenumber components will traverse this
distance soonest; the high wavenumber components much later.

But we can consider also (as mentioned already) a median wavenumber m,, in the sense that
half of the distribution of wind-stress curl has wavenumbers greater than m,, and half less. The
definition is ambiguous unless it is specified whether the half is to be measured on an amplitude
or on an energy basis. For example, a distribution of wind-stress curl proportional to |
exp{—y2/y3} (with a suitable parallel of latitude chosen as = 0) has Fourier transform propor-
tional to exp{— }y3m?}, and the median wavenumber is deduced from error-function tables as
0.95/y, on an amplitude basis or 0.67/y, on an energy basis. A suitable value might lie in between,
because as we shall see the waves partly combine constructively (favouring amplitude) and
partly interfere (favouring energy).

The intermediate choice m, = 0.8/y,, with y, chosen so that the width of the zone within which
the wind-stress curl exceeds one-sixth of its central value is 5° of latitude, gives my = 1/(200km).
This is proposed, however, merely as a one-significant-figure estimate of median wavenumber.
It suggests that half of the signal might have reached the western boundary when with m = m,
the propagation distance f#/m? has reached its median value 2000 km. This gives ¢ = 25 days, to
which the addition of about a week’s time lag for concentration of this half signal into a narrow
boundary current yields an overall time-scale for the current’s formation of about a month.$

A better idea of the distribution of western boundary current with respect to 7 can be obtained
by calculating the Fourier transform of (51) for some plausible, relatively simple distribution of
wind-stress curl. It is important to discover, in particular, how the fact that low wavenumber
components arrive soonest affects the current’s form. For this purpose there is no need for exact
representation of the wind-stress curl distribution, which in any case is not known. Instead, a
simple distribution is used whose median distance from the western boundary x = 0 is x,In 2,

namely, G,—F, = —dexp{— (x[x,) — (v*[y3)}. (52)

T At other locations, actually, this second integral becomes negligible fairly quickly, as we can now see from
its approximate form (32), whose interpretation is

po [ c@ s 0n ax

tending to 0 as ¢ - co because the integrand is only significant for x— X less than about 1.4/8%.

I Consideration of the inclination of the Somali coast to the north-south direction, which follows, increases
the estimated time lag for the concentration process to 10 days, giving 35 days as the total time-scale of response,
but the difference from a month is not significant.
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Its Fourier transform is C = — §(Ayo[7) exp{— (x/x,) — Fygm?}, (53)
so that (51) becomes
Ax, ¢
(P)ans = ot exp{~ g} [ 1-exp |~ L) . (54)

The required total flux (¥),_, in the barotropic part of the western boundary current must,
after its Fourier transform has become asymptotic to (54), take the form (4x,/#) times a function
of y[y, and y,/(ft[x,). The value for y/y, = 0, where the flux is greatest, is exactly

(Vo) amo = (Axo/B) [1 —exp { —yo\/ (Bt/%0)}], (55)

depending, in a manner unusual in physics, on an exponential of the square root of the time.
This maximum flux has risen to half its ultimate value Ax,/# when

t = (%o/fy5) (In 2)% (56)
this agrees well with the previous estimate, because ft/m equals the median propagation distance
(%91n 2) when my = 0.83/y, (compared with the previous 0.8/y,).

As to the distribution of current as a function of y/y,, the ultimate behaviour for very large

ol (Bt i Fodevo = (45el8) exp (- 1213 (57)
varying with y exactly as does the wind-stress curl itself. But at earlier times the current is spread
over a broader range of values of yy,, because the high wavenumber parts of the signal have not
yet arrived. Indeed, evaluation of the Fourier transform of the product of two exponentials in
(54) by steepest descent gives

(Y0)amo = (A%o|8) [exp { — y2[y8} — [exp { — 1y2/y8 — Yo/ (Bt]%0) }] cos {(y[yo) [240\] (Bt]%0)]%}], (58)

where the exp (—1y2/y2) factor indicates the extra breadth for moderate values of yo./(f%/x,) ; for
example, at the time (56) when the maximum flux has reached half its ultimate value, figure 3
shows that (58) has significant magnitude for almost twice the range of values of y/y,.

At much earlier times still, such a steepest descent evaluation of the Fourier transform of (54)
would be inadequate, but accurate evaluation is not worthwhile because (54) is an inadequate
representation of (50) at such times. The physical difficulty is that for the components of very
low m which predominate at small times typical values of / may no longer be small compared
with m, and therefore the group velocity may not be directed even approximately westward.
Equation (50) takes this into account, and indicates for what values of m this difficulty becomes
important.

With C given by (53), the Heaviside interpretation of (50) is

_ 4y, 2 crle exp {pt;dp
() gm0 = %—exp{ 1yem }277.1 J; o (,32+ 4pPm2) [ 2pxg = B+ (B2 + 4pPm?)E]" (59)
The integrand of (59) has branch points at p = +if/2m and a pole at p = 0. There may be a
second pole where the expression in square brackets is zero, namely at p = — fx,/(m?3 — 1), but
with the positive sign outside the square root this is found to be so only if [m| > x5'. The total
contribution to (59) from the residues at the poles is found to be

(Axoyo/2fm) exp (= tygm®) [1— H(|m| —x5") exp {— Bxot] (m?x§— 1)}], (60)
and, as in the earlier discussion of (39), (¥),_, differs from (60) by the sum of two loop integrals
over the branch points.
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Evidently, (60) differs from the previous approximation (54) only when m is of order x5, a
value relevant only at times of order (fx,)~! = 4 h. For ratios x,/y, as big as we are concerned
with (say, 18), the steepest-descent estimate of (60) is, furthermore, indistinguishable from that
of (54). The relative importance of the loop integrals is harder to assess, but asin the case of (39)
their contribution is strictly wavy with frequencies at least £/2m, and seems likely to be reduced
in effect very substantially by destructive interference. The slowly varying background to these
relatively rapid fluctuations is the boundary-current distribution given by (58) and plotted in
figure 3, which would be expected to be the main observable effect.

T | N ]
-4 -2 4 y/v

Ficure 3. Predicted barotropic component of boundary-current flux, () 4_o, associated with onset of a distribu-
tion of wind-stress curl given by (52). The predicted flux is measured on a scale 4x,/f; curve (a) indicates
steady-state values after a long time, while curve (b) indicates values after a time given by (56), when the
peak has reached half its ultimate value.

The conclusions of this section are finally tested further by varying two of the hypotheses which
underlie them: the north—south alinement of the western boundary, and the uniformity of the
ocean depth. The mean inclination (to the north-south direction) of the African coast in the
region of the Somali Current (say, from 2°S to 9°N) is 40°; this inclination is maintained fairly
constant, only a slight bulge occurring around 3° N. The continental shelf is narrow in this region
and remains closely parallel to the coastline. This suggests trying a modification of the theory in
which the western boundary runs at a constant angle « east of north, with « taken as 40° in
application to the Somali Current problem.

No change is required in the evaluation of {5, but the boundary condition (25) which deter-
mines g must now be applied on the line ¥ = y tan «. For this, it is convenient to use rotated
axes in which the coordinates are

X =xcosa—ysina, Y = xsino+ycosa. (61)

The boundary value of ¢y is supposed Fourier analysed with respect to ¥ as

(Folwo = [ e weas, o das (62)
so that if Y = J C ety po(X, M, 1) dM (63)
then @@ satisfies D0, M, t) = — V@ (M,t). (64)
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Because east-west wavenumbers / in ¢ are an order of magnitude smaller than the north-south
wavenumbers m, it is a good approximation for a moderate inclination such as a = 40° to write

Y@(M,t) = (seca) ¥ (0, Mseca,t), (65)

in terms of the quantity (¥),_, studied intensively above.
1In the new axes, equation (23) satisfied by 15 becomes

(%+%)%+ﬂ(cosa%§+sina%) =0, (66)
and so @ satisfies, in Heaviside notation,
P(PYx — M2P®) + B[ (cos ) DY + (1M sin o) D] = 0, (67)
Independent solutions of (67) are e1X and e’z X, where
e
The solution of (67) which satisfies (64) and does not increase exponentially as x— 0 is
PO = — P e X, (69)

where P stands for the Heaviside representation of P@ (M, ¢). As was done following (36), we
must now evaluate the Heaviside interpretation of e4: X, representing the boundary response to
a step-function change in the flux arriving at it.

We may go straight to the approximation parallel to (41), based on an expansion of 4, in
ascending powers up to and including the term in p itself:

Ay = —(p[p) cosa+iM tan o — (pM?2[f) secd . (70)

On this approximation, the interpretation of e X is

XM2sec3oc)]}. (71)

exp{iMXtana}%{2J[(ﬁXcos o) (t._ A

Three differences from the earlier solution (41) are apparent. First, the approximate time
required for concentration of the boundary current in a width X (say, 100km) is not 1.4/4X but
1.4/(fX cosa). Secondly, this time increase by a factor seca appears also from the correction
(XM?%sec®a), which by (65) can be written Xm?sec « in terms of a median wavenumber m of the
incident wave. For a = 40° this factor seca = 1.3 increases the previous estimate of the time lag
to about 10 days.

Thirdly, there is a phase difference between the boundary response, carrying the factor
exp {iMXtana}, and the incident wave, which (for typical / < m) carries a factor

exp{—iMXtana}.

Combining these with the factor exp {iMY}, we may say that the lines of constant phase of the
incident wave make an angle approximately + o with the normal to the boundary (that is, they
are nearly parallels of latitude), but those of the boundary response, on the approximation (71),
make an equal and opposite angle —a with the normal. This fact, noted in a rather general
context already by Longuet-Higgins (1964), directs parallel to the boundary the inner part of
the current, where .J; is near 1. Farther out, the current direction veers as the westward feed flow
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turns round to stream along the boundary. The estimate of boundary-current thickness is
unaffected by these phase considerations, being simply the distance from the boundary at which
the Bessel function factor in the response (71) first falls to zero.

The other modification to the theory of barotropic response, that due to non-uniformity of
ocean depth, was outlined briefly in § 1, noting especially the interaction term (9), added to the
left-hand side of (5) or (22) to allow for changes in vertical vorticity (integrated from surface to
bottom) produced by vertical stretching when a current moves into a region of greater depth.
This makes possible energy exchange between different Rossby wave modes through ‘resonant
interaction’ (see, for example, Hasselmann 1967) with some wavy component of variation of
depth H. Such resonant interactions of three wave modes are subject to the rule that the frequency
and wavenumber components of one mode are each equal to the sum of the frequency and
wavenumber components (respectively) of the other two modes.

Because the depth variation has zero frequency, this requires the two interacting Rossby waves
to have identical frequency. Now, the wavenumbers (/,m) of Rossby waves of fixed frequency o
lie on a circle of radius #/2w, which is centred on the point / = — /2w, m = 0, and passes through
the origin. The group velocity of waves corresponding to a point on that circle is directed along
the inward radius from that point to the centre. Points with |/| < |m| are close to the origin, and
the associated group velocity is approximately westward. Evidently, if the (/,m) values of such
a point on the circle are known, an approximate value m?/2|/| can be deduced for the radius of
the circle. This is important because a wavy component of bottom topography, that can transfer
energy from such a wave to one with group velocity not approximately westward must have
wavenumber whose magnitude is (within a factor of 2) equal to that radius.

Specifically, the wavenumber vector of such a component of bottom relief must be represented
by a line joining two points on the circle, one of which is near the origin. If the group velocity of
the other makes an angle of more than 30° with the westward direction, the magnitude of the
vector is that of a chord subtending some angle between 30° and 180° at the centre, and this is
equal to the radius within a factor of two. For a median m of 1/(200km), and a median [ of
1/(3000km) corresponding to the distribution (52) with a median distance x,In2 equal to
2000 km, this radius is m?/2{ = 0.04km—1.

We may infer that attenuation of the westward travelling barotropic signal by energy transfer
to waves travelling in other directions occurs mainly by resonant interaction with components of
depth variation with wavenumbers of order 0.04 km~. Because the more prominent, larger-scale
variations would not be effective, and because the interaction term (9) is of substantially reduced
importance relative to the beta effect near the Equator, attenuation by this mechanism is likely
to be only moderate. Furthermore, it would not affect the estimates of time-scale of barotropic

response that have been given in this section,

3. BAROCLINIC MODES OF PROPAGATION

Baroclinic response, for reasons mentioned in § 1 and the Appendix, is expected to be most
significant in the first baroclinic mode n = 1. The effective depth H in this mode is normally of
the order 1 m and, for the equatorial region of the Indian Ocean, is estimated more closely in
the Appendix as 0.75 m. Because interest in the following studies of baroclinic propagation and
response mainly centres on the # = 1 mode, and this alone is used in illustrations and applications
of the theory, no suffixes or other distinguishing marks are placed on H, u, v, etc., to signify which

Vol. 265. A.
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baroclinic mode is being studied. Much of the theory to be described can be applied equally to
higher baroclinic modes, but is not so applied to any significant extent in this paper.

Equation (3) is, as with barotropic response, the foundation of the theory, but because H is so
much smaller in the baroclinic case the third term in (3) plays a far more crucial role. It was
explained in § 1 why the north—south variation of /2 in this term must be allowed for in equatorial
regions, and the study of baroclinic propagation near the equator with this taken into account is
the main concern of the present section. That study is preceded, however, by introductory notes
on baroclinic propagation at higher latitudes, where it is locally permissible to treat /2 as well as
in equation (3) as a constant.

Such propagation is governed by equation (3) with the right-hand side replaced by zero.
Wave-like solutions of this equation, proportional to exp { —iwt+ ilx + imy}, satisfy the dispersion
relation —w?+gHo(l2+m?) + wf?+gHpl = 0. (72)
Solutions of (72) in the baroclinic case are much more radically separated than in the barotropic
case into ‘tidal’ solutions with  slightly exceeding the ‘inertial’ frequency f= 10~%s~1 and
solutions with enormously lower frequency. For the former solutions, which are not of interest in
ocean current dynamics, the last term in (72) is completely negligible and effectively

0 = frrgH (P +m),
which gives only a moderate correction to the inertial frequency except at rather high wave-

numbers.
As o decreases below f, however, there is an extensive gap without any solution until

w < 3B(gH)3f, (73)

an upper limit which at (say) a typical Gulf Stream latitude of 40° is about 3 x 10~7s~1, When
(78) is satisfied, the first term in (72) is negligible and effectively

(l+2%)2+m2=<§’%)2—§1, (74)

which in the (/,m) plane represents a circle with centre ( — /2w, 0) and radius

[(B/20)*— (f?|gH)]z.
Wind stresses of approximately zonal distribution should preferentially excite waves with
|/] < |m|, a condition which can be satisfied on the circle only if its radius is very close to /2w,
requiring that (73) be satisfied with a large factor to spare.
An alternative form of (74), solved for  in terms of [ and m, is

Bl
CPmt+(fYgH)’
which shows that, under these conditions with || < |m|, the group velocity (dw/ol, dw/om) is
approximately westward with magnitude given by equation (11), which is greatest when m is
small compared with f(gH)-%. The maximum which it then approaches is gHp[f?, a value
independent of m, so that propagation under these circumstances is non-dispersive. It is governed,
in fact, by equation (10), which, when propagation without local forcing is being considered
(giving zero on the right-hand side), becomes

S —gHpv, = 0. (76)

W= (75)
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This equation (76), for Veronis & Stommel’s ‘non-dispersive baroclinic Rossby waves’,
indicates so clearly limitations on the time-scale of baroclinic response of oceans away from the
Equator, as well as being a prototype model of the equation to be used near the Equator, that it
is desirable to elucidate its physical meaning. This can be done with especial precision in the
simple two-layer model of the ocean (see Appendix). We begin the discussion, however, with a
consideration that applies to an ocean with any number of layers.

Equations (4) and (9) of the Appendix show that, in any baroclinic mode, we can write for the
disturbed value %% of the vertical extent of the kth layer (which in the undisturbed state is H¥)

R = HE(1+ckh), (77)

where the variable £ (the same for each layer) satisfies

hy = — (uzy+,). (78)
In terms of %, equations (10) and (11) of the Appendix without any forcing term become

u—fo = —gHh,, (79)

v+ fu = — gHh,, (80)

while the equation for § = dv/ox — ou/dy, the curl of (u,v), is obtained from (79) and (80), using
(78 as o+ po—fh = 0. (51)

In the special case of a two-layer model, we may take ¢! = 1, so that («, v) represents the velocity
in the upper layer (of depth H'), and then ¢* = — H'/H?, so that the velocity in the lower layer is
— (H'|H?) (u,v). The thermocline sinks, under the disturbed conditions (77), by an amount H14,
so that equation (81) can be interpreted as a vorticity equation for the upper layer which takes
into account not only the beta effect but also the rate of increase of vorticity due to stretching of
vortex lines when the thermocline sinks. Alternatively, it can be interpreted as ( — H1/H?) times
a vorticity equation for the lower layer, including a rate of decrease due to contraction of vortex
lines when the thermocline is being lowered.

For the low-frequency changes involved in baroclinic propagation, it appears probable that
equation (76) represents a limiting case when the local rates of change #, and {; of momentum
and vorticity in equations (79) and (81) can be neglected, giving

o = gHh, and pfv = fh, (82)

and hence (76) itself. The second of equations (82) simply balances the convective rate of increase
of vertical vorticity in the upper layer against a rate of increase due to thermocline sinking.
When v is positive, it says that reduction of relative vorticity, due to northward motion in the
upper layer, must be balanced by the stretching effect of thermocline sinking.

This idea can also be expressed in terms of absolute vorticity (the sum of the planetary
vorticity 28, parallel to the Earth’s angular velocity £, and the vorticity of ocean movements
relative to the Earth’s rotation), as indicated in § 1. The second of equations (82) makes the rate
of thermocline sinking when v is positive such that the vertical component of absolute vorticity
in both layers is conserved, as vortex lines in the upper northward-moving fluid stretch vertically
to compensate for the decreasing angle they make with the vertical, while those in the lower
southward-moving fluid, whose angle with the vertical is increasing, decrease their vertical
extent.

9-2
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At the same time, the first equation is the familiar equation (derived by Margules for the
meteorology of cold fronts) which relates the slope of a density discontinuity to the velocity
change across it under conditions when local rates of change are negligible. The velocity dis-
continuity is (H°/H?%) v, where H® = H*+ H? is the ocean depth, and the thermocline slope is
H1p, so the Margules relation between them would be

SHIH) v = g(Dp[p®) H'hy, (83)

which agrees with the first of equations (82) since, for a two-layer model, by equation (20) of
the Appendix, H = (Ap/p°) (H*H?* H").

Westward propagation of a positive value of v occurs then, in a two-layer model, by (i) the
thermocline sinking demanded by absolute-vorticity conservation, (ii) the tilting of the thermo-
cline that then results if to the west it has not yet sunk, (iii) the new positive values of v which the
Margules relation demands to be produced in that region of tilt to the west. For propagation of
the first baroclinic mode, even in a many-layered oceanic model, the mechanism seems likely to
be similar, requiring sinking of the region of greatest density gradient where v > 0 so that
absolute vorticity changes are minimized; the analogy to the Margules relation in that general
case is the general baroclinic relationship between angle of tilt of density contours and
vertical gradient of horizontal velocity.

When forcing by wind stress is present, equation (76) contains additionally various right-hand
side terms as in (10), because generation of additional vorticity by wind-stress curl alters (81),
while generation of eastward momentum alters also (79). Although this linear equation (10)
for forced baroclinic response of oceanic regions away from equator is rather unsatisfactory,
in that for various reasons noted in § 1 nonlinear effects must be important, it does give significant
insight into limitations on time-scale of response. It is therefore worthwhile to note briefly the
solution of (10) appropriate when in an ocean at rest a distribution of negative wind-stress curl
is ‘switched on’ at time ¢ = 0.

The left-hand side is proportional to a single derivative taken along a path P, defined by

y = constant, x+ (gHp[f?)t = constant. (84)

Such a path P can be used to join any point (¥, y,¢) to a point (x + (gHp[f?)t,y, 0) corresponding
to the instant before the wind-stress curl was switched on. The path contains a main part P
during which the wind stress is steady and (10) takes the form

_gHﬂ(d”/dx)Pl = "gH(Gacw "ny)a (85)
and a short stretch P, near ¢ = 0 where the wind stress is rising to its steady value quickly enough
for the time-derivatives on the right of (10) to dominate over space-derivatives, so that (10) can
be written SA(dv[dt) p, = [d(Gy —fF)[d] p,. (86)

The solution of (85) on P, starting from the initial condition given by the solution of (86)

on P, is v = [(Gm“Fy)/ﬁ]ngI{ﬂ/ﬂ)t_f_lF(x+ (gHBIf?) t,y). (87)

At early times £, while the first term is still small because the values of wind-stress curl at (x, y)
and (x+ (gHB/f?) t,y) are still close and nearly cancel, the geostrophic second term dominates
(87), but it becomes negligible compared with the first later, when such cancelling ceases. That
dominant first term then implies, for northern-hemisphere mid-latitude zones with negative
wind-stress curl, that a southward motion satisfying the baroclinic analogue of the Sverdrup
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relation is accompanied by an equal and opposite northward flow pattern, which propagates
steadily to the west at a speed gHg/f?, which in such zones is of the order of 0.01 m/s.

This baroclinic analogue of the Sverdrup relationship demands, for a given wind-stress distri-
bution, currents exactly proportional to the barotropic ones produced by the Sverdrup relation
proper. However, their surface value is greater by a factor (expression (21) of the Appendix)
which for the z = 1 mode may be much greater than 1. As soon as the propagating component
of (87) has moved right away from the steady residual current, the latter combines with the
steady residual barotropic current (see §2) to form a strong response, concentrated mainly in
the upper layer of the ocean above the regions of greatest density gradient.

Such a combination is not, however, predicted as occurring to the propagating parts of the
barotropic and baroclinic response until after a time interval of many years, because as was seen
in § 2 the barotropic flux field propagates to the west at speeds of the order of 1 m/s and piles up
on the boundary when it arrives there. Corresponding baroclinic signals, travelling at around
0.01 m/s, arrive at an enormously later time. Nevertheless, when they do, a method similar to that
used in §2 in the barotropic case, or §4 in a different baroclinic case, predicts again that hori-
zontal mixing, at any rate, would cause them to pile up on the boundary in a concentrated
stream.

There can be little doubt that nonlinear effects would, in reality, play a bigger role in regu-
lating the western boundary current; furthermore, reasons were given in § 1 why they can hardly
fail to be important in the main body of a mid-latitude ocean. The linear discussion has been
included above, however, not only because it brings out limiting factors for those oceans, but
also because it forms a useful introduction to the more complicated considerations necessary in
an equatorial ocean.

Especially near the equator, the physical description given above needs modification already
in the dispersive case governed by equation (75), when the simple balance (76) is complicated
by local rates of change of vorticity (mainly, of its , component), although, in a mid-latitude
ocean, these are important only when m is at least of order f(gH)* = 1/(30km). Near the
equator, indeed, as explained in §1, this critical wavenumber f(gH)~% takes much lower
values, and the #, component of vorticity must in all cases be taken into account; furthermore
the variation of f causes large changes in the group velocity (11) in a distance even as small as
1/m, so that the variability of the f? coeflicient in (3) needs to be taken into account.

These arguments lead to the representation of (3) near the equator by (12), which when
propagation in regions without local forcing is being studied takes the form

Vg — gH V20 + %20, — gH v, = O. (88)

The same group of arguments, or alternatively a simple dimensional analysis of (88), indicate
that baroclinic propagation near the equator takes place on fundamental scales of length
(gH)* (28)~* and time (gH)~* (28)~% as in (16). When all lengths and times are measured on

these scales, (88) becomes
€se ) ( ) Vgt — Vzvt + %yzvt - %vw = 0. (89)

For the value 0.75 m of H derived for the equatorial Indian Ocean in the Appendix, these scales
are close to 250km and 1 day respectively.

The fundamental wave-like solutions of (89) which are concentrated near the Equator
(actually, all those which do not tend exponentially to infinity with distance from it) take the

form v = exp{—iwt+ilx} Dy (y) (90)
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for M = 0,1,2,..., where w?— 12— (l[20) = M + 1. (91)
Here D,,(y) is the parabolic cylinder function
Dy (y) = [exp{iy}] (—d/dy)M[exp{— 343, (92)
which (Whittaker & Watson 192%) is the only solution of
w'(y) + (M+3—3y%)uw(y) =0, (93)

which tends to zero (rather than becoming exponentially large) both as y-> + 00 and as y——co.
The parabolic cylinder functions arise naturally near the equator, since the Earth’s surface is
locally developable into a cylindrical shape of locally parabolic section.

! I T T 1

i
-3 -2 -1 0 1 2 { 3

Ficure 4. Equatorial baroclinic modes; dispersion relation (91) between frequency  and eastward component
of wavenumber /, where the number labelling each curve is the associated value of M, and the scales (16)
are used for length and time. Only the half-plane w > 0 is shown; rotation through 180° about the origin
gives the form of the curves for @ < 0. Broken line: inadmissible branch of the dispersion-relation curve for
M = 0. Dotted-line box: region |/| < 0.4, || < 0.4, relevant to the monsoon problem, where the simpli-
fied dispersion relation (99) holds.

The dispersion relation (91) is plotted in the (/, w) plane in figure 4 for M = 0,1 and 2. The
case M = 0 is special, in that (91) factorizes into two separate solution curves

w+l=0 and [=w-(1/2w). (94)

These have group velocity dw/d! exclusively negative (westward) and exclusively positive
(eastward), respectively. Thus, the former solution curve (whose group velocity, relative to the
fundamental scale of velocity (¢H)%, is — 1) might be supposed important for the propagation
of baroclinic signals to form western boundary currents. That curve is drawn as a broken line
on figure 4, however, because it is not in fact possible for a mode concentrated near the equator
to be propagated according to this dispersion relation w +1 = 0.
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This conclusion follows as soon as we consider the deduction of the other velocity component
from equation (90) for v. This must use (1) and (2) which, for propagation in regions without
local forcing, become (when f is replaced by fy and all lengths and times are referred to the
fundamental scales (16
( >) U — Uyy = Ugy + %yvt: (95>
Uy — FYUy = Vg — Vyy+ (96)
When ? % 2, (95) enables us to deduce that, corresponding to the mode (90) for v, there is a
rolution u = exp {~ it +ilx} [iLDi(y) ~ hyio Dy (5)]/ (2~ ?) (97)

for u, which like that for v tends to zero both as y— + 00 and as y—— co.

It is easily verified that this solution satisfies also (96), as it must since v satisfies an equation
found by eliminating « from (95) and (96). Those equations have a different relative status,
however, when w = —/, and when (90) includes the factor Dy(y) = exp {— 1y?%}; then (95) gives
no information at all about « because both sides are identically zero. Accordingly, (96) must be
used; its solution with u— 0 as y > — o0 is

u = (ifl) exp {il(+#) + %yg}f:o exp { —14%} [Do(y) + *Dy(y)] dy; (98)

this becomes exponentially large as y =+ oo, unless in this limit the integral takes the value zero.
But the value which it takes, (/2—$%)./(27), is in general not zero.

For M = 0, then, the first of the two alternative dispersion relations (94), namely, w+1[ = 0,
does not correspond to any equatorially concentrated wave-like mode. On the contrary, the
eastward component of velocity # becomes exponentially infinite (either as y—>—oco or as
y—>+ 00, or both), unless the integral in (98) vanishes when taken from — co to co, which is true
only for / = +1, so that w = T} and therefore / and w satisfy the second of the dispersion
relations (94) in this particular case. Thus, an equatorially concentrated mode satisfies (90) for
M = 0 only when that second dispersion relation / = w— (1/2w), corresponding to exclusively
eastward group velocity, is satisfied.

Blandford (1966) obtained the solutions (90) (though there is a trivial difference in his method
of non-dimensionalizing, and he expresses them in terms of Hermite polynomials instead of
parabolic cylinder functions) but did not discard the solution M = 0, w+/ = 0 because he
calculated u incorrectly in this case. Essentially, he substituted M = 0in (97) and then took the
limit as w— —1I. This gives an incorrect answer because M would not be exactly zero, as (91)
shows, if w differed slightly from — /. The difference between Dy, (y) and D(y) in this case would
give a non-zero additional contribution to the limit of (97); furthermore, because D,,(y) for
non-integral M becomes exponentially infinite as y tends to at least one out of + oo and — oo, the
said limit (excluded from Blandford’s expression for %) has the same property.

The M = 0 mode governed by / = w — (1/2w), or in the original units by [ = w(gH)~% — (8/w),
is interesting, but likely to be excited to only a small extent by phenomena on the monsoon’s
characteristic scales of time or east—-west breadth. In the non-dimensional (/, w) plane of figure 4,
where the scales for / and w are 1/(2560km) and 1/(1 day), the M = 0 dispersion relation (plain
line) contains no points with / and w both small; the shortest distance from the origin to the curve
is 0.64. Zonal disturbances with / < } (that is, / < 0.001km~") can generate waves only in the
frequency range 0.59 < w < 0.84 (on a scale of day—?), within which disturbances of the monsoon
type would have relatively little energy. The waves, furthermore, would have an eastward group
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velocity (of between 1.1 and 1.6 m/s) and therefore no influence on the formation of a western
boundary current.f

By contrast, figure 4 shows that for the higher modes M = 1,2, ... there are waves with both
! and w small, represented by points near the origin where the curves are nearly straight lines.
Equation (91) shows that near the origin the slope of these is

wfl = —1)(2M +1), (99)

so that the waves propagate non-dispersively to the west with non-dimensional velocity
1/(2M +1); in the original units, with the velocity (15). These non-dispersive waves (whose
existence was noted also by Longuet-Higgins (1968, p. 527)) are analogous to those found by
Veronis & Stommel (1956) in the case f constant, but typical velocities are greater, namely,
0.9, 0.55, 0.4 m/s and so on.

For M > 1, branches of the dispersion curves in figure 4 which pass through the origin satisfy
(99) to reasonable approximation (within 109, for M = 1 and more accurately for M > 1)
when [ < 0.4 (that is, / < 1/(600km) in the original units), so that for studying response to the
monsoon (99) is an adequate approximation. The branches which do not pass through the origin
have, on the other hand, much too high frequency to be relevant (in every case more than 1.2).
All this suggests that for studying dynamic response to monsoon onset equation (99) may be a
satisfactory first approximation to the dispersion relation for the A/th mode. Going to a second
approximation (involving a slight reduction in group velocity for the higher wavenumbers, but
far less than in the barotropic case) would not be justified in the present state of knowledge of the
forcing wind stresses.

Accordingly, the first approximation, adequate when /?> and »? are both small compared
with 1 (or, in practice, when both |/| and |w| are less than 0.4), is used in what follows. It involves
the neglect of the w? — /2 term in (91), which in turn means neglect of v, and vy, (but not v,,,)
in (88). That equation therefore becomes

— gHvyy,,, + fPyPo, — gHpv, = 0. (100)

The second and third terms here can be interpreted in terms of the absolute-vorticity conserva-
tion principle outlined above in the case f constant, while the first represents the effect of shear
(that is, of additional vorticity due to changes in the gradient of eastward velocity « in the
north—south direction).

Equation (100) has the same fundamental solutions (90) as does (88), but the associated
dispersion relation is simplified to (99). There is'now no solution with A/ = 0, whichhasw +/ = 0
as sole dispersion relation on this approximation, leading necessarily to an exponential infinity
of u in at least one of the limits y —— o0 and y —+oc0. (The alternative curve [ = v — (1/2w) is
on this approximation (100) excluded, quite properly because it contains no points with |/| and
|w] both less than 0.4.) Accordingly, the first two propagating modes, obtained by substituting
for D;(y) and Dy(y) in (90) and (97), are

M=1: (u,v) =[(3/8]) (3—y2),y] exp {il(x+}t) — 1%} (101)
and M =2 (4,0) = [(5/120) (6y—y®), 4 — 1] exp (il + 1) — 3y2). (102)
1 Dr Bretherton has pointed out to the author that there is also one mode representing a solution of (95) and

(96) with v identically zero, so that it is not included in the sequence (90). This Kelvin-wave mode (referred to
again in §4) has both phase velocity and group velocity eastward and equal to + 1, and is given by u = Dy (y) e/{==%.
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Studies in § 4 indicate that the initial baroclinic response of the western equatorial part of the
Indian Ocean to monsoon onset may be particularly influenced by these two modes of lowest
order (101) and (102).

4, BAROGLINIC RESPONSE IN AN EQUATORIAL OCEAN

In this section, with the work on modes in § 3 as background, an attempt is made to tackle in
the baroclinic case the problem investigated in the barotropic case in § 2; that is, to find the
changes in current distribution from some supposedly steady state at time ¢ = 0, that may result
from changes in the wind-stress field beginning at that time. As in § 2 we divide the response into
two parts: a part calculated for an unbounded ocean, which we distinguish by suffix U, and a
part subsequently added to it in order to satisfy boundary conditions.

If the special units (16) for length and time are used in an equatorial ocean, the basic equation
(12) for baroclinic response becomes

vttt_vzvt"*'%yzvt'—%va: = Gtt'"Gwa;'"%yFt"_ny' (103)
Here F and G have the dimensions of force per unit mass, so that the unit in terms of which they
are measured is (¢H)E (28) = 3x105ms~2 for H = 0.75m. (104)

The form (90) of solutions to (89), the special case of (103) with zero on the right-hand side, may
suggest that (103) be solved by expanding the quantities », ¥ and G each in a series of parabolic
cylinder functions D, (y) for M = 0,1,2,.... This is the method used in this section, but it is
carried out only on an approximate simplified form of (103).

In fact, it was argued in § 3 that changes in wind-stress field associated with monsoon onset
are overwhelmingly characterized by frequencies w and east—west wavenumbers / that are small
in the units here used. The response of, at least, the unbounded ocean should accordingly take
the form of modes such that the v, and v,,, terms in (103) are negligible (as was indicated in
connexion with (100) to be so if |w| and |/| are both less than 0.4). .

Furthermore, as in § 2, the G,,, term is neglected in relation to the F,, term because the wind
stress varies more steeply in the y direction (north-south) than in the x direction. Similarly, Gy,
is neglected because for small v it is small compared with $yF; (except in that narrow part of the
region of interest where 1y is small). Thus, for calculating the response of an unbounded ocean,

the simplified equation vy + by, — b, = — JyFy+ Fy, (105)

is used, although the methods are in principle applicable to the more complicated equation (103).
The solution of (105) for an unbounded ocean, vy, is expanded, together with the eastward
component of wind stress F, in series

vo = 3 0M(xt) Dyly), F= 5 FM(x,2) Dyly), (106)
M=0 M=0

as is possible because the Dy, (y) form a complete set. The coefficients in these equations are
given, for example (Whittaker & Watson 1927, art. 16.7), by

(0 = 37 | Pu@ P dy. (107)

The inclusion of the M = 0 term is essential, but the work of § 3 indicates that its coefficient
v°(x,¢) cannot on this approximation contain any propagating component.

10 Vol, 265. A,
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When the series (106) are substituted in (105), and the fact is used that D,,(y) is a solution of
(93), we obtain

3 (M43 =31 Dy() = X [=3FFuDu() +FEDy()]. (108

The recurrence formulae (Whittaker & Watson 1927, art. 16.61),

YDy (y) = Dyrya(y) + MDy,_4(y), }
Dy (y) = — §Daa(y) + 5MDy4 (),

which hold for all M > 0, and also for M = 0 provided D_,(y) is taken as zero, allow the right-
hand side of (108) to be written

(109)

1 = 12
—5 Z (FMHFI) Dy(y) +5 3 (M+1) (FH = FPH) Dy (y), (110)
M=1 M=0

so that coefficients of D,,(y) can be separately equated to zero, giving

-1y = FL—F}, (111)
while, for M > 0,

EM+ 1) —p)t = —F)-— Y-t (M + 1) (FY = FPY), (112)

Particular cases M = 1 and 2 of (112) were given in (18) and (19).

Equation (111), with its simple solution v°® = — F1, shows that the coefficient of Dy(y) in v
involves a purely local response to the wind-stress field without any propagating component.
This agrees with the impossibility, argued in §3, of any M = 0 mode being propagated with
= —[. The same conclusion would have been found for the more exact equation (103), since
Fourier components of the forcing wind stress with @ = —! would produce zero effect on the
right-hand side (as is evident for the terms in G, and has just been calculated for the terms in F),
implying that waves satisfying this relationship cannot be generated.

Equation (112) is rather easy to solve by integrating along characteristics. For the important
case of a near-step-function response (a wind-stress field F rising to a steady state in a period of
only a few days), the method of solution used for the mid-latitude problem in § 3 can be used.
The value of ¥ at a point (x, t) is obtained by integrating along a straight path P in (x, ¢) plane,
joining that point to the point (x + /(244 + 1), 0), and divided into two parts P, and P,. On the
main part P, of the path P, F has reached its steady value, and (112) can be written

— (doM[dx)p, = —F3F~' + (M +1) F+1, (113)
but, on the short stretch P, where F'rises to its steady value, (112) takes the different approximate
form (2M +1) (dvM[dt) p, = — {d[FM-1 4 (M + 1) FM+1][d}, . (114)

The solution of (113) on A, starting from the initial condition given by the solution of (114)
on B, is
oM = [ — FM=1 4 (M4 1) Frr]7Hi@IED
— (M + 1)V {FM-1 g+ t/(2M + 1))+ (M + 1) FMH[x +t/(2M + 1) ]}
= [F¥(x) = (M+1) F¥(2)]
F[2(M 4 1)[(2M 4 1)] (MEY x4/ (20 + 1)] - P[4 4 (2M 4+ DT) (115)
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In this last expression, the first term represents a localized response to wind stress, and the second
a propagating response. The latter is especially important, partly because it allows the ocean
to respond outside the actual region of forcing by wind stress, but mainly because, as in the
barotropic case, it appears that the propagated motions must largely cease propagation on
reaching a western boundary, where the flux they represent must become concentrated in a
narrow region.

The method of calculation of the boundary response is similar to that used in §2 for the
barotropic case, but in detail is slightly complicated by the fact that the incident flux in the
baroclinic case is not given by a stream function, because the solution (uy, vy) for an unbounded
ocean represents waves propagated at speeds as much as %, 1, etc. of 4/(¢H), and so does not
satisfy the two-dimensional equation of continuity to adequate accuracy. The calculation is
performed first without taking any turbulent mixing into account, so that the appropriate
boundary condition is one of zero velocity component normal to the boundary.

To express this, we must write down the velocity field for the unbounded ocean (uy, vy) at
the boundary, where only the propagating part of (115) is non-zero. The appropriate value of
vy is obtained from (106), in which ¢° has no propagating part, as

0

v = 3 [2(M-+1)/(2M+1)] Dag(y) (MPH [+ 8] (2M +1)] =¥ [x 1] (2M + 1]}
(116)

To obtain the corresponding value of uy, we note, from (97) with w/l substituted from (99), that
the v given by equation (90) is accompanied by

u = — (il)texp {—iwt +ilx} [(2M + 1) [AM(M +1)] [(2M + 1) Dy (y) + 3yDpr ()] (117)

Hence the v given by (116) is accompanied by

© r+(2M+1)
w == 3 (U2M)[(2M+1) Dig(y) + Du(w)] | [MPM#(X) — FH-1(X)] dX,

’ (118)

where the lower limit can be taken as X = 0 because the origin of x is chosen so that there is no
wind stress to the west of it.

It might be thought somewhat arbitrary in (118) to take the lower limit of integration in the
extreme west rather than in the extreme east, but the knowledge that no signal propagates
westward along characteristics dx/d¢ = — 1 of the equation for z (which in the forced case is (95)
with an extra term F; on the right-hand side) indicates that this must be correct. Furthermore,
direct solution of that equation for #, with v and F given by (106) and (115), which is straight-
forward though tedious, confirms this conclusion.} :

To the baroclinic wave given by (116) and (118) a further wave field (ug, vg) must be added
so that the sum has zero normal velocity at the boundary. This reflected wave field cannot
satisfy the approximate form (99) of the general dispersion relationship, since that form involves
westward energy propagation. Furthermore, that form requires small /, and there is no reason

+ Actually, for general values of x, the value of uy so deduced is equal to expression (118), with the lower
limit replaced by x, plus a term

i) [ ) ax

representing an eastward propagating Kelvin wave of the type described in the footnote to §3, p. 76.

10-2
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to suppose that the east-west wavenumber for the wave field (ug,vg) will be small; that field,
rather, is expected to assume the form of a concentrated boundary current.

On the other hand, the frequencies associated with (ug, vg) must be low, as low as those
associated with the field (uy, ;) whose normal component it must cancel on the boundary. If
lyis a typical wavenumber associated with the forcing wind stress F, the frequency characteristic
of (uy, vy) is {y/ (2M + 1), as is clear from the wave-velocity value (99) or from the form of (116)
or (118). The only baroclinic modes of low frequency without westward group velocity, by (91),
are those which approximately satisfy

— 12— (lJ20) = 0, (119)

that is, with [ = —1/(2w), corresponding to the bottom left of figure 4. The error in retaining
from (91) only the terms shown in (119) is a numerical overestimate of / by not more than 49,
if [y < 0.001 km~! (giving /, < 1 when the length scale (16) is used).

The dominance in (91) of the terms shown in (119) means that only the v;,, term in (3) is of
crucial importance, along with the f-effect term, in the boundary response. These are precisely
the terms which dominated in the barotropic case. Furthermore, the fact that |o/l| is extremely
small in the boundary response means that the two-dimensional equation of continuity«, +v,, = 0,
implying the existence of a stream function, can be used to excellent approximation for the
boundary response field (ug,vg). The theory is therefore almost identical with that used in the
barotropic case, except for the slight complication that no stream function exists for the incident
wave field (uy, vy).

For a western boundary taking the form x = 0 first discussed in § 2, the Rossby-wave equation
(23) for the stream function ¥ of the boundary response should accordingly be solved with

(V) a0 = —up = +uy. (120)

This boundary condition can, however, be thrown into the form (25) used in § 2 by integration
with respect to y, giving by (118)

(~Wems= E vu) [ MPHA(X) - PHU(0)] A, (121)
where Varlo) = [ (2M)[(2M0+1) Dity) + 1yDarls)] . (122)

The appropriate lower limit in (122) depends on whether M is even or odd. Components of u;
with M odd are symmetrical about the equator y = 0, and we can therefore expect a symmetrical
boundary response, with ¢ an odd function of y; hence y,, = 0 for M odd. Components of
uy with M even, on the other hand, are antisymmetric about y = 0, and the boundary response
may be expected to relieve this by flow across the equator; this indicates that y,; = + oo for
M even. :

A rigorous explanation of why these choices of y,; are needed, if the theory of § 2 is to be used
to infer the boundary response, derives from the fact that only they cause ¥, ( + 00) + 9, ( — 00)
to be zero, and so avoid the need for any d-function component d(m) in the Fourier transform
of ¥r5(y). The method of § 2 could not be applied to the constant term in (¢),_, corresponding
to such a d-function component (although it can be applied to the rest of the Fourier representa-
tion) because A; = 0 for m = 0 and so an appropriate boundary response to a constant value of
() 2o 18 simply a constant value of .
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The whole theory of boundary response goes through as in the barotropic case with (Y¥ry),—o
replaced by (—),_o, that is, by the right-hand side of (121). The answer (corresponding to

(37)) is
¥ = vl [, fedipste— iy I Lo EEIWEME a1

The physical interpretation of (123) is simply that every element of flux (121) reaching the
boundary becomes concentrated in a gradually thinning boundary current. The part of the
current corresponding to a given quantity of arriving flux takes about a week to be concentrated
in a thickness of about 100 km. As with the barotropic case, the influence of nonlinear effects or
horizontal transport or both can be expected to prevent further reduction of thickness beyond
a steady-state value; for horizontal transport this is proved by the identical mathematics
(leading to (49)).

If a time lag of about a week is not too significant, we may infer that the important quantity
predicted by the theory is expression (121), namely, the total flux reaching the western boundary
in the westward propagating wave. This becomes a measure of the baroclinic component of
total flux in the boundary current, namely the integral of the baroclinic component of the
northward velocity v with respect to the eastward coordinate x across the current. We are not
speaking here of ‘ total transport’, which involves an integral of ﬂux from surface to bottom and
is essentially barotropic; actually, a flux that is from some points of view more important, as well
as easier to measure, is the upper-layer transport (or transport in the current within the upper
200-300m) which would be influenced principally by this baroclinic component of flux (121).

These conclusions are not much altered if we take into account the slope of the Somali coast
at an angle « of about 40° to the north—south direction. The time-lag is slightly lengthened (by a
factor of sec = 1.3) asin § 3. The boundary condition is altered, depending now on the integral
along the boundary of the normal velocity u cos &« — v sin a. However, for the modes such as (101)
and (102) with which we are concerned, with / small, # is so much greater than v that the term
vsina is relatively insignificant. Integration with respect to ysec« along the boundary then
yields the same boundary value (right-hand side of (121)) for the boundary-response stream
function as in the case o = 0.

The importance of equation (121) for the baroclinic flux delivered to the western boundary
makes it desirable to plot the functions 1/, (y) representing the contributions made by different
modes, and this is done in figure 5. Positive ¢, corresponds to northward flow in the boundary
current, and negative to southward. Thus, the ¥,(y) mode with positive coefficient represents
a boundary current flowing outwards from the equator, whereas the ¥,(y) mode with negative
coefficient represents a northward flow near the equator balanced by a southward flow far from
it; we write here of a positive coefficient for ¢,(y) and a negative coefficient for 1,(y) because
these are the signs which, as we shall see, appear most probable from (121).

It is the ¥y, (y) with low values of M, plotted in figure 5, that are mainly important in the
problem of this paper. They represent fluxes resulting from modes concentrated quite close to
the equator, with relatively fast speeds of westward baroclinic propagation (between about
0.3 and 0.9 m/s). The modes with higher values of M penetrate to higher latitudes, but propagate
more slowly. They would be relevant to any attempt to get a complete picture of dynamical
response to monsoon onset, but their appearance in early stages of the response could at most
represent response to nearby winds. This paper is directed, rather, towards understanding to
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what extent western boundary currents can be set up within, say, a month by meteorological
changes many hundreds, or even thousands, of kilometres away.

In order to estimate that response qualitatively, we need to use the form of the coefficients in
(121) to obtain estimates of their magnitudes and signs. This requires estimation of the normal-
mode expansion (106) of the function F' (which itself is the first baroclinic component of the

eastward wind force per unit mass, given by (17) of the Appendix with #» = 1, and referred to
(104) as a unit).

Yo (¥)

-4

N-
>

-4

Ficure 5. Baroclinic flux functions ¥,,(y) given by (122), where M takes the values 1 to 4
attached to the curves.

To obtain that normal-mode expansion, in the case of what was described earlier as a
near-step-function change in the pattern of eastward wind stress arising from onset of the
monsoon, we seek to evaluate (107) with F(x,y,t) independent of ¢ for ¢ > 0 and zero for ¢ < 0.
Furthermore, F(x,y,t) is supposed to vary much more slowly with x than with y. The wind
changes associated with the monsoon are mainly concentrated north of the equator, and we may
take the boundary between small and large changes as approximately a parallel of latitude,

say, ¥ = ¥i-
This suggests a tentative model with
F = Fo(x) H(t) H(y — 1), (124)
where the function F,(x) represents the change in F occurring at about the time ¢ = 0 for y > ;.
Then (107) gives
Fo(x) H(t)
Pu(s, 1) = el f Dy(y) dy, (125)
and so (121) becomes
© t/(2M+1)
(~Paa= 2 Aa) [ FX)dX, (126)

where we can write the coefficient 4, as

*TDyria
= (i yigiem [, [ 3T Do 12
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and also as 1

Ase = =1y igem) 31 1 V)~ V), (128)

if we use the recurrence formulas (109) to express it in a form whose value can conveniently be
read off from figure 5.

We can now estimate how strong a western boundary current would be created within, say,
a month by wind changes in regions not very close to the boundary. By contrast, effects of local
winds are not considered because the present method is probably not the most suitable for
dealing with those. Specifically, we consider how large the flux (121) might become in 22 days
(allowing the rest of the month for concentration of that flux into a boundary current). During
this period the fastest mode (M = 1) would travel about 1800 km.

To make such an estimate, we calculate (126) with F,(x) replaced by some typical average
value F, for xy < ¥ < xw and zero for other values of x. Here, F,(x) is taken to be zero for x < xj,
to exclude effects of local wind changes, where in practice xy is taken equal to 2 in the units here
used (that is, to 500km). On the other hand, xyy is taken large enough so that no signals from
x > xy reach the boundary in the time involved (this means xy > 1800km). We are essentially
calculating the effect at the boundary of wind changes at distances between 500 and 1800 km
from it.

With these assumptions for F,(x), there are contributions to (126) only from the first four
modes M = 1 to 4 (because only those can travel 500km in 22 days), the coefficient of ¥, (y)
when ¢ = 22 being A4,,[22/(2M + 1) — 2] F, in each case. If the parallel of latitude to the north of
which there is substantial eastward wind stress is taken as y; = 1 (roughly 2°N) then

(=) a—olFa = 0.75¢,(y) — 0.505(y) — 0.214r5(y) — 0.049),(y). (129)

This function, plotted in figure 6, estimates the ratio of baroclinic flux in the western boundary
current to the baroclinic component of wind stress per unit mass after monsoon winds have
begun to blow in a region north of 2°N and east of 50 °E.

Ficure 6. Predicted baroclinic component of boundary-current flux, (— ) ,_,, associated with onset of a distribu-
tion of wind stress given by (124) with F,(x) equal to F, for 2 < x < 7.2 and zero elsewhere. The function
plotted is given by (129), so that the flux is measured on the scale F, if the units (16) are used for length
and time.

The general form of figure 6 does represent some sort of rough picture of the Somali Current
as described in § 1. The ratio takes a maximum value of about 2 and exceeds half this maximum
in the region 0 < y < 2. The general pattern of northward flow, beginning at y = — 0.4 (that is,
at 1°S) and continuing to y = + 2.7 (that is, to 6°N) is reminiscent of the Somali Current
pattern, The observed current extends farther up the coast, however, to about 9° N (Swallow &
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Bruce 1966). This could well result from nonlinear effects neglected in the present theory, since
numerical computations with and without nonlinear inertia terms have shown that they cause
boundary currents to ‘ overshoot’, that is, to continue in a concentrated form for a longer distance
than in their absence. That may be because linear theory is concerned only with propagation
effects, whereas nonlinear theory combines these with effects of advection.

If we are to compare with observations the predicted absolute values of the flux that becomes
concentrated in the western boundary current (in 1 month after the changes of wind stress occur
more than 500km away), we must take a particular value for F,. Here, F, can be expressed in
terms of an average value 7, of the eastward wind stress by equation (17) of the Appendix for
n = 1, in which ¢} is taken equal to 1. Using the fact that expression (21) of the Appendix was
calculated as equal to about 14 for n = 1, we obtain F, = 147,/p°H°. With ¢} = 1, the physical
significance of ( — ), is surface current (strictly, its baroclinic component, which however is
expected to be considerably bigger than the barotropic), integrated across the width of the
boundary current. Figure 6 shows this to rise to about 2F, in non-dimensional units, which in
dimensional units means that

‘ (=¥)amo = FulB = 147, [p°H°p. (130)

Actually, the corresponding barotropic component can be estimated from the results of § 2.
The assumption (52) is consistent with an eastward wind stress increasing by 7, across the
equatorial region provided that the corresponding increase 7,/p°H? in the barotropic component
of the wind force F is equal to Ayg/m. The scale for (), in figure 3 is therefore

Axolf = (%ofyo7) (Tal p°H'P), (131)

which for values of x, and y, proposed in § 2 is about 107, /p°H°5. Hence in figure 3 the graph (b),
appropriate to the boundary-current distribution after 1 month, gives a maximum of 57,/p%H°p,
realized at the centre of the zone of transition of wind stress between the values 0 and 7,; that is,
at y = 0 in the coordinates used in § 2, corresponding to y = 1 in the coordinates used in this
section. This is about the same position as that of the maximum of the baroclinic component
(figure 6); the sum of the two maxima is 197,/p°H°8.

Itisinteresting that the 14 : 1 advantage of the » = 1 mode over the z = 0 mode (see Appendix)
in strength of forcing term is reduced, in an equatorial ocean, by a factor of 5 as far as the resulting
predicted peak boundary current is concerned, because barotropic propagation is more concen-
trated, and less prone to effects of destructive interference. Thus, these predicted barotropic
components of surface current are all positive, and tend to increase somewhat the predicted
surface strength of the Somali Current, as well as to reduce the significance of the negative
baroclinic component of northward flux change for y < — 0.4. They are, however, mainly con-
fined to the region |y| < 3y, in the coordinates of § 2, which for those of §4, with the value
Yo = 160km proposed in §2, is the region —0.9 < y < 2.9. In latitude terms this is the region
between 2°S and 7° N, so that the barotropic contribution cannot make much difference to the
predicted point of separation.

Observed peak values of surface flow, (=), + (Y1) 50> are about 2 x 105m?/s (whether we
obtain this by integrating a concentrated current of 2m/s over a width of 100km or by dividing
an observed volume flow of 5 x 10?m?/s by a mean depth of a little over 200 m). The theory
predicts that 40 9%, of that value, namely 0.8 x 105m?/s, is reached in 1 month (taking distant
winds only into account) if 7, = 0.4 N/m? (note that 1 N/m? = 10dyn/cm?).

This appears to be a reasonable value of 7, for monsoon winds. It corresponds to southwest
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winds of velocity 14 m/s, or force 6 on the Beaufort scale, a typical enough figure (Anantha-
krishnan 1964), producing a wind-stress 0.55 N/m? with eastward component 0.4 N/m2 The
data on winds over the ocean are not complete enough to allow much weight to be attached to
this crude test of the theory’s amplitude predictions. The test does appear to indicate, however,
that the equatorial baroclinic modes not only are propagated fast enough to account for the rate
of response of the Indian Ocean, but also can be sufficiently excited by monsoon winds to account
for much of the amplitude of response near the western boundary.

APPENDIX. LINEAR THEORY OF LONG WAVES IN A HORIZONTALLY
STRATIFIED OCEAN OF UNIFORM DEPTH

In this Appendix, a simplified account of the linear theory of long waves in a horizontally
stratified ocean of uniform depth, with turbulent momentum transfer neglected, is given.
Because a stratification including some well-mixed layers, as well as continuously stratified
portions, may be of interest, the analysis is given first for N discrete well-mixed layers of depth
H’, where j goes from 1 at the top to N at the bottom, and then extended (by letting N —00) to
cases of continuous or partly continuous stratification. Finally, the characteristics of modes for
simplified density distributions representing the parts of the Indian Ocean near the Equator are
calculated.

As stated in the Introduction, we use p to indicate, for water of given temperature and salinity,
the density which that water would have at atmospheric pressure, p, say. (Thus, p is the quantity
whose value in kg/m? is written 1000 + o by oceanographers.) When the actual density at a
different pressure p has to be written, p® is used. The equations of motion in each layer take
somewhat simplified forms in terms not of the pressure p but of the integral (for fixed temperature

=" olp) e (A1)

representing a pressure reduced by the modifying action of compressibility so that within each

and salinity)

well-mixed layer (gradp)/p®, the acceleration due to pressure gradient, can be written
(grad P)/p. In particular, since for long waves vertical accelerations can be neglected,

P, =—pg. (A 2)
Furthermore, if in the jth layer p? is the value of the pressure-corrected density p, while (F7, G7)
is the external horizontal force (if any) per unit mass, averaged through the depth of the layer,
and (u/,%) the horizontal fluid momentum per unit mass similarly averaged, the linearized
equations of rate of change of momentum are
d=f = FI—(BJp), 4/ = G~ (Bp). (43)
Here, P must be obtained by solving (A 2), given that in the disturbed state of the ocean the
vertical extent of the kth layer may have changed from its undisturbed value H* to a disturbed
value #* which by mass continuity satisfies
HEJHE = — (ulf + k). (A4)
If we ignore any slight discontinuity of P at the interface between two layers,t the solution of
(A 2) satisfying P = 0 at the free surface takes at a point in the jth layer the form
P =g[p'ht+p2h2 + ...+ p W4 pI (B + B+ 4 L+ BN —Z)]. (A 5)

t Such a discontinuity is possible, even though p itself is continuous, owing to slight variations in the com-
pressibility with temperature and salinity, but its effect on the final equations is negligibly small.

11 Vol, 265. A.
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Here, z is measured from the bottom, so that the term in round brackets represents the thickness
of the part of the jth layer above the point in question. Equations (A 3), with expression (A 5)
substituted for P, can be differentiated with respect to ¢ to eliminate the 4% through use of (A 4),
giving

. N

utjl —fo} = F{ + glc;l ajk(u’agw + v’cgy): (A 6)
. . N ’ k

il = G+ 3, anliy +oly), (A7)

where the matrix element a;;, has the value
ajy, = Hepmn G- 0fpl. (A 8)

Solutions of (A 6) and (A7) can be expressed as a combination of normal modes; in each of
these modes the distribution of horizontal force and momentum per unit mass between the
different layers is in fixed proportions ¢/ (j = 1 to N); that is

(W, 0") = ci(u,0), (F1,G7) = ci(F,G). (A9)

In order that (A 6) and (A7) take the form of equations for (u,v) alone, namely,
Uy —Jfvy = Fy+ gH (g + ), (A 10)
Uy +fuy = Gy + gH (uy, +v,,), (A11)

which are (1) and (2) of the main paper, the ¢/ must satisfy
N .
> ajct = Hl. (A 12)
k=1

This means that ¢/ must be an eigenvector of the matrix a;;,, with H as associated eigenvalue.

If (A 10) is operated on by gH 9?/ox oy —fd/ot, and then added to the result of operating on
(A11) by 92/0r> — gH 92/0x2, the terms in u cancel (even though df/dy = £ + 0) and the equation
after one integration with respect to # becomes the fundamental equation (3) of the main paper.
Conclusions from that equation are fully worked out there. In this Appendix, however, some
further properties of the eigensolutions of (A 12) are elucidated.

Equation (A 12) possesses altogether N linearly independent eigenvectors ¢/, all real; each
of these, with its associated real eigenvalue H, will be distinguished by a suffix n, where
n=0,1,2,...,N—1. The need for eigenvectors and eigenvalues to be real is proved by making
the simple substitution ¢//\/(p’H’) = C7 in (A 12), from which H is seen to be an eigenvalue
(with associated eigenvector C7) of the real symmetric matrix p™»¢.® (H1Hk|pipk)}, This last fact
implies also the orthogonality of different eigenvectors Cj, and Cj,. In terms of the ¢/, this can be
written

J

N
S piHichcl, =0 (n =+ n'). (A 13)
=1

Furthermore, the N different eigenvectors C? form a complete basis, and so therefore do the ¢/,

This is important when a given distribution of force per unit mass (/7, G7) is applied to the layers
J = 1to N. Whatever the distribution, it can be expanded in normal modes, for example as

N-1
(Fi,G') = X ch(Fy, Gy), (A 14)
n=0
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where the coefficients (F,, G,) are determined using the orthogonality relation (A 13) as

N
gy ARG
Fn> Gn ==

- (A 15)

> p H(c})?

j=1

This is important because the nth normal mode of external force distribution can excite only the
nth normal mode of the distribution of momentum per unit mass; that is, if

. N_l .
(uj’ va) = X ¢ (una Un)’ (A 16)
n=0

the (u,,v,) are related to the (F,,G,) by equations (A 10) and (A 11) with H replaced by H,,.

The special case of surface forcing by wind stress (7,, 7,) is important to this paper. If the Ekman
layer is not thicker than the uppermost well-mixed layer, then the momentum increase directly
generated by wind stress appears solely in that uppermost layer j = 1. Thus, (F7,G%) is
(T4 7,) [p*H* for j =1 and zero for j > 1, and the coefficients (A 15) in its normal-mode

expansion (14) are
pansion (14) A1y T,)

(Fn, Gn) = .
PIH(c})?

(A 17)

M=

j=1

I

This is the formula which, in a more general case of stratification that may be partly continuous,
can in the limit be written with the sum replaced by an integral as in (6) of the main paper.

This oceanographically relevant case of partly continuous stratification demands a limiting
process in which certain layer thicknesses remain constant (representing thicknesses of well-
mixed layers) while the others decrease in magnitude and increase in number (representing
continuous stratification). In the limit, it is possible to expand every function which is constant
in each well-mixed layer (but may vary arbitrarily elsewhere) in a series of the eigenfunctions
cn(2).

The need to make a distinction between a barotropic mode n = 0 and (N—1) baroclinic
modesn = 1,2, ..., N—1 appears from a particular degenerate case of (A 8), in which the varia-
tions in p (amounting at most to three or four parts per thousand) are neglected altogether. That
is a case when a;;, is a matrix of rank 1 (the £th column having all its elements equal to /%), and
so has only one non-zero eigenvalue (the total depth H° =k12v‘,1H’c), corresponding to an eigen-
vector satisfying ¢/ = 1 for all j. At the same time, it has the (N — 1)-fold degenerate eigenvalue
zero, corresponding to a class of eigenvectors limited only by the condition ’glckH k= 0.

=
Perturbation by the very small density variations can be expected to alter only slightly the non-
degenerate eigenvector ¢/ = 1, with eigenvalue equal to the actual depth H°; but the degenerate
eigenvalue zero should be split into (N — 1) separate ones, which can be expected to be far smaller
than H°, but possibly varying in magnitude considerably among themselves.

The perturbation analysis for the barotropic mode n = 0, starting from the eigenvector ¢/ = 1
and eigenvalue HY, is elementary, but the result is hardly worth writing down as the relative
changes in eigenvector and eigenvalue are actually smaller than the total relative change in p,
which is at most three or four parts per thousand. Within the accuracies in which we are inter-
ested, we can take the effective depth H, of the barotropic mode to be equal to the actual depth

I1-2
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88 M.J.LIGHTHILL

H°, and its distribution of momentum per unit mass to be uniform in the different layers. Owing
to the degeneracy, however, more detailed analysis is needed for the baroclinic modes n = 1 to
N-1.

For this purpose, (A 12) may be multiplied by p?/H and subtracted from the same result with
J+ 1 substituted for j. We obtain.

N
py' +1p7+1 pj o = E kck[ pmin G+L k) pmm @, k)]

(F+1—pl) 3 Hbeh, (A 15)

k=7+1

!
Tl = ml

This is the equation which, to a very close approximation, as stated in the Introduction, we can
interpret in terms of the vibrations of a string stretched to unit tension between z = 0 and z = H°.
In this interpretation, ¢/ is proportional to the inclination of the string in the jth interval (of
width H7) to its unstretched direction, 1/H is equal to the square of the radian frequency of
vibration, and the mass concentrated at the join between the jth and (j+ 1)th intervals is
(pitt—pf)[p® where p° is an average value of p (no mass being present except at such joins).
This mechanical interpretation is exact for a modified form of equation (A 18), where both
sides are divided by p? and the left-hand side is then approximated by ¢/+! —¢7. For this difference
represents the component of tension at right angles to the unstretched direction of the string
acting at the join between the jth and (j+ 1)th interval, while the right-hand side becomes the
mass at that join times the square of the frequency times the perpendicular displacement

N
> HkCF
k=j+1
of the join in question; thus, the equation states correctly the rate of change of momentum
of that mass. For the baroclinic normal modes, ¢/+1/¢7 is not close enough to unity to invalidate
the accuracy of replacing (p/+1c/+1 — pic?) by pO(ci+t —¢f).

This mechanical interpretation of the eigenvalues or ‘effective depths’ H,, H,,..., of the
baroclinic modes, as inverse squares of normal frequencies of vibration of such a stretched string,
is valuable because it can be immediately extended to the case of partly continuous stratification.
Then the string analogy is correct provided that the relative fall in density, (—Ap)/p?, in every
interval Az of the vertical coordinate z, is equal to the mass on the corresponding length of string.
The nth baroclinic mode of variation of (#,v) with z, namely ¢, (z), the continuous limit of ¢,
is still represented by the inclination of the string to its unstretched direction in the nth mode
of vibration.

This statement is more general than a formulation as a classical Sturm-Liouville problem

u(2) = ¢'(2),
where ¢"(2) + (1/H,) (= p'(2)[p°) $(2) = 0, (A 19)
$(0) = $(H°) = 0,
because that makes no explicit provision for discontinuities in p(z); formulations in terms of a
Viisala—Brunt frequency
=J[-gp'(2)Ip°]

are still more unsatisfactory, because delta functions lack square roots.... By contrast, the state-
ment in terms of inverse squares of normal frequencies of vibration of a stretched string gives
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useful physical feel for how the eigenvalues will vary. Furthermore, from knowledge regarding
normal modes of vibration we can infer the useful general result that, if H;, H,, H,, ..., are in
descending order, the nth baroclinic mode ¢, (z) must change sign just » times between z = 0 and
z = H°,

To apply the general theory to the part of the Indian Ocean near the Equator, it is necessary
to take into account distributions of p (usually written, in kg/m3, as 1000 + o) typical of that
area. Like other tropical regions, it has a rather sharp thermocline at quite a moderate depth:
a change in oy from about 24.0 in the upper well-mixed layer (corresponding to a temperature
about 24 °C and a salinity about 35.29,) to about 26.6 (corresponding to a temperature about
12 °C and a salinity about 34.9 9,) occurs within a few tens of metres around a depth of 200 m.
Beyond this, values of o, increase slowly with depth to around 27.7, taking a value close to this
at depths exceeding about 2000 m (Warren ef al. 1966; Hamon 1967).

We consider the character of baroclinic modes, first as resulting from the thermocline by
itself, and then from its combined action with the slow density rise below it. The situation when
p varies only in a thermocline region of rather small thickness can most simply be approximated
by a two-layer model. This has just one baroclinic mode n = 1, whose effective depth H, is easily

2__pl 2
H =" pop H! (g—o) (A 20)

calculated as

where H'is the depth of the upper layer and the last factor (H?/H?) is very close to 1. For typical
values p% — pt = 0.0026p° H' = 200m and a depth H® = 4000m (to whose value, however, the
results are not very sensitive), this gives H; = 0.50m. The mode has the fluid velocity in the
upper layer 19 times as much as in the lower, and in the opposite sense.

The actual thermocline, even in the tropics, is not perfectly sharp; furthermore, its thickness
varies considerably. Fortunately the theory of the baroclinic modes for a not perfectly sharp
thermocline indicates that the first mode remains essentially like that just described, although
with the velocity discontinuity smoothed out over the region of the thermocline. A perturbation
method shows, furthermore, that the formula (A 20) remains correct if the depth H* to which the
‘upper layer’ is deemed to extend is the depth of a certain level within the thermocline region,
which is higher than the level of the centroid of the density-gradient distribution by a difference
equal (for typical distributions) to around one-ecighth of the thickness of that region.

This correction is at most 10m for typical thicknesses, so that the first baroclinic mode is
expected to be essentially that for a sharp discontinuity in p at about 200 m. Admittedly, with
the smoothed-out thermocline higher baroclinic modes exist, but the effective depth of the
second baroclinic mode is already very small, being given by a formula like (A 20) with H?!
replaced by at most a tenth of the width of the thermocline region. These higher modes, with
effective depths not more than about 0.02m, have such slow response times that their effect in
the problem of this paper is negligible; furthermore, for reasons to be described, they are
negligibly excited by surface wind stress.

An adequate representation of baroclinic response in the Indian Ocean needs, in fact, to take
into account the gradual density rise below the thermocline region more than these minor effects
of the region’s thickness. The various forms taken in various places by this density rise to about
oy = 27.7 can all be crudely approximated by a linear rise. Accordingly, the first baroclinic mode
has been calculated for a sharp density rise Ap at depth H1, together with a gradual linear increase
in density by a further amount 0.4Ap between depths H* and H*.
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Table 1 gives the calculated effective depth H; of the first baroclinic mode as a fraction of
(Ap/p®) Hy. We shall use the central value, corresponding to H' = 200m, H® = 4000m and
H* = 1600 m; this latter depth, the limit of linear rise in density beyond which uniform density
is assumed, is taken rather less than the depth 2000m beyond which density rise becomes
practically negligible because the rate of rise is declining rapidly for some distance above that
level; but the table shows the ratio not to depend critically on the exact values assumed.

TasLE 1. VALUEs oF H,[[(Ap/p®) H'] FOR VARIOUS VALUES OF H'/H® aND H*|H°

H*|H°
s A Y

H/H® 0.3 0.4 0.5
0.04 1.514 1.570 1.602
0.05 1.420 1.443 1.450
0.06 1.363 1.370 1.363

Accordingly, the effective depth of the first baroclinic mode in the equatorial zone of the
Indian Ocean will be taken as (1.443) (0.0026) (200m) = 0.75 m. The associated distribution
of velocity with depth, ¢,(z), is shown in figure 7, where the plain line shows the calculated distri-
bution with a sharp thermocline and the broken line the expected modification in the presence
of a more diffuse thermocline.

From this distribution, it is possible to calculate for n = 1 the coefficient

e, [ ) (A 21)

This represents non-dimensionally the relative effect on the surface itself (or, more strictly,
within the upper well-mixed layer) of the term in ¢,(z) (whose coefficient is given by (6) of the
main paper) in the expansion of a surface-acting force. Expression (A 21) is 1 for the barotropic
mode n = 0, but for the first baroclinic mode n = 1 as depicted in figure 7 it takes the value
13.9, a much larger value because [¢,(z)]? is comparable with its surface values only in regions
quite near the surface.

A surface stress can, accordingly, force surface currents through the baroclinic mode z = 1
about 14 times as strongly as through the barotropic mode n = 0. The extent of response to the
forcing is not necessarily in this proportion, however, because solutions of equation (3) are quite
different for different values of H. Barotropic modes propagate much more efficiently than
baroclinic modes in mid-latitude oceans, while even in equatorial oceans §4 shows that the
above 14: 1 disadvantage is somewhat reduced.

For higher baroclinic modes, however, the corresponding coefficient is much smaller than
even the barotropic value 1, and effective depths H,, are much smaller than for the first mode
n = 1. Table 2 gives values of the largest of them, H,, in the same form (and for the same oceanic
model) as in table 1. Typically, H, is about 8 9, of H,, so that propagation speeds (proportional
to 4/H,) are for n = 2 less than 30 9, of what they are for n = 1. The motion is mainly confined
within the region of gradual density rise below the thermocline; surface effects are very small,
with values of the coefficient (A 21) around 0.1 or less.

The response of the northern Indian Ocean in the higher baroclinic modes, then, is less
than 0.3 times as rapid as in the first mode; in addition, it is quantitatively irrelevant to any
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explanation of surface-current response. Only the first baroclinic mode 7 = 1, and to a minor
extent the barotropic mode n = 0, with times of response which are shown in the main paper
to be comparable, need to be taken into account.

]

N

I
0 05 @) 10

Ficure 7. Distribution, ¢,(z), of velocity with depth in the first baroclinic mode n = 1. Plain line: velocity distri-
bution for an ocean model with

pO— (&) (z/H°—0.6)Ap for 0.6 < z/H® < 0.95,

{p“ for 0 < z/H° < 0.6,
pP—1.4Ap for 0.95 < z/H° < 1.

Broken line: suggested velocity distribution for a density distribution identical except that discontinuities are
somewhat smoothed out.

TABLE 2. VALUEs OF H,/[(Ap[p®) H'] FOR VARIOUS VALUES OoF H'/H® ANp H*|H®

H¥/H®
e A N
HY/H° 0.3 0.4 0.5
0.04 0.109 0.148 0.185
0.05 0.084 0.116 0.145
0.06 0.067 0.094 0.118

"The author is most grateful to Dr H. Stommel, Dr J. C. Swallow and Dr G. Veronis for helpful
discussions on the subject of this paper.
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